21.10.2014 Views

Rational Points on Hypersurfaces in Projective Space

Rational Points on Hypersurfaces in Projective Space

Rational Points on Hypersurfaces in Projective Space

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> <strong>in</strong> <strong>Projective</strong> <strong>Space</strong><br />

Jörg Jahnel<br />

Mathematisches Institut der Universität Gött<strong>in</strong>gen<br />

25. 07. 2006<br />

jo<strong>in</strong>t work with Andreas-Stephan Elsenhans<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 1 / 36


The Fundamental Problem<br />

Problem (Diophant<strong>in</strong>e equati<strong>on</strong>)<br />

Given f ∈ Z[X 0 , . . . , X n ], describe the set<br />

{(x 0 , . . . , x n ) ∈ Z n+1 | f (x 0 , . . . , x n ) = 0},<br />

explicitly.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 2 / 36


The Fundamental Problem<br />

More realistic from the computati<strong>on</strong>al po<strong>in</strong>t of view:<br />

Problem (Diophant<strong>in</strong>e equati<strong>on</strong>—search for soluti<strong>on</strong>s)<br />

Given f ∈ Z[X 0 , . . . , X n ] and B > 0, describe the set<br />

{(x 0 , . . . , x n ) ∈ Z n+1 | f (x 0 , . . . , x n ) = 0, |x i | ≤ B},<br />

explicitly.<br />

B is usually called the search limit.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 3 / 36


Geometric Mean<strong>in</strong>g<br />

Integral po<strong>in</strong>ts <strong>on</strong> an n-dimensi<strong>on</strong>al hypersurface <strong>in</strong> A n+1 .<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 4 / 36


Geometric Mean<strong>in</strong>g<br />

Integral po<strong>in</strong>ts <strong>on</strong> an n-dimensi<strong>on</strong>al hypersurface <strong>in</strong> A n+1 .<br />

If f is homogeneous: <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> po<strong>in</strong>ts <strong>on</strong> an (n − 1)-dimensi<strong>on</strong>al hypersurface<br />

V f <strong>in</strong> P n .<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 4 / 36


A statistical forecast<br />

Thus,<br />

Q(B) := {(x 0 , . . . , x n ) ∈ Z n+1 | |x i | ≤ B}<br />

#Q(B) = (2B + 1) n+1 ∼ C 1·B n+1 .<br />

On the other hand,<br />

max<br />

(x 0 ,...,x n)∈Q(B) |f (x 0, . . . , x n )| ∼ C 2·B deg f .<br />

Assum<strong>in</strong>g equidistributi<strong>on</strong> of the values of f <strong>on</strong> Q(B), we are therefore led<br />

to expect the asymptotics<br />

#{(x 0 , . . . , x n ) ∈ V f (Q) | |x 0 |, . . . , |x n | ≤ B} ∼ C ·B n+1−deg f<br />

for the number of soluti<strong>on</strong>s.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 5 / 36


Examples<br />

The statistical forecast expla<strong>in</strong>s the follow<strong>in</strong>g well-known examples.<br />

n + 1 − deg f < 0: Very few soluti<strong>on</strong>s.<br />

Example: x k + y k = z k for k ≥ 4.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 6 / 36


Examples<br />

The statistical forecast expla<strong>in</strong>s the follow<strong>in</strong>g well-known examples.<br />

n + 1 − deg f < 0: Very few soluti<strong>on</strong>s.<br />

Example: x k + y k = z k for k ≥ 4.<br />

n + 1 − deg f = 0: A few soluti<strong>on</strong>s.<br />

Example: y 2 z = x 3 + 8xz 2 .<br />

Elliptic curves.<br />

Another Example: x 4 + 2y 4 = z 4 + 4w 4 .<br />

More generally, surfaces of type K3.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 6 / 36


Examples<br />

The statistical forecast expla<strong>in</strong>s the follow<strong>in</strong>g well-known examples.<br />

n + 1 − deg f < 0: Very few soluti<strong>on</strong>s.<br />

Example: x k + y k = z k for k ≥ 4.<br />

n + 1 − deg f = 0: A few soluti<strong>on</strong>s.<br />

Example: y 2 z = x 3 + 8xz 2 .<br />

Elliptic curves.<br />

Another Example: x 4 + 2y 4 = z 4 + 4w 4 .<br />

More generally, surfaces of type K3.<br />

n + 1 − deg f > 0: Many soluti<strong>on</strong>s.<br />

Example: x 2 + y 2 = z 2 .<br />

C<strong>on</strong>ics.<br />

Another Example: x 3 + y 3 + z 3 + w 3 = 0.<br />

Cubic surfaces.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 6 / 36


A few complicati<strong>on</strong>s<br />

Unsolvability<br />

Unsolvability <strong>in</strong> reals,<br />

x 2 + y 2 + z 2 = 0.<br />

p-adic unsolvability,<br />

u 3 + 2v 3 + 7w 3 + 14x 3 + 49y 3 + 98z 3 = 0.<br />

Obstructi<strong>on</strong>s aga<strong>in</strong>st the Hasse pr<strong>in</strong>ciple<br />

(Brauer-Man<strong>in</strong> obstructi<strong>on</strong>, unknown obstructi<strong>on</strong>s?).<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 7 / 36


A few complicati<strong>on</strong>s<br />

Unsolvability<br />

Unsolvability <strong>in</strong> reals,<br />

x 2 + y 2 + z 2 = 0.<br />

p-adic unsolvability,<br />

u 3 + 2v 3 + 7w 3 + 14x 3 + 49y 3 + 98z 3 = 0.<br />

Obstructi<strong>on</strong>s aga<strong>in</strong>st the Hasse pr<strong>in</strong>ciple<br />

(Brauer-Man<strong>in</strong> obstructi<strong>on</strong>, unknown obstructi<strong>on</strong>s?).<br />

“Accumulat<strong>in</strong>g” subvarieties:<br />

x 3 + y 3 = z 3 + w 3 def<strong>in</strong>es a cubic surface V <strong>in</strong> P 3 .<br />

is predicted.<br />

#{(x 0 , . . . , x n ) ∈ V (Q) | |x 0 |, . . . , |x n | ≤ B} ∼ C ·B<br />

However, V c<strong>on</strong>ta<strong>in</strong>s the l<strong>in</strong>e given by x = z, y = w, <strong>on</strong> which there<br />

is quadratic growth, already.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 7 / 36


Man<strong>in</strong>’s c<strong>on</strong>jecture<br />

Let us c<strong>on</strong>centrate <strong>on</strong> the case n + 1 − deg f > 0.<br />

C<strong>on</strong>jecture (Man<strong>in</strong>)<br />

Let V f be a smooth hypersurface <strong>in</strong> P n . Assume n + 1 − deg f > 0. Then,<br />

#{(x 0 , . . . , x n ) ∈ V ◦ (Q) | |x 0 |, . . . , |x n | ≤ B} ∼ C ·B k log r−1 B.<br />

Here, k := n + 1 − deg f , r = rk Pic V .<br />

Remarks<br />

C is an explicit c<strong>on</strong>stant described by E. Peyre.<br />

The assumpti<strong>on</strong> n + 1 − deg f > 0 implies V f is a Fano variety.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 8 / 36


What is known?<br />

Man<strong>in</strong>’s c<strong>on</strong>jecture is true for n ≫ 2 deg f (circle method).<br />

[Birch, B. J.: Forms <strong>in</strong> many variables, Proc. Roy. Soc. Ser. A 265<br />

(1961/1962), 245–263]<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 9 / 36


What is known?<br />

Man<strong>in</strong>’s c<strong>on</strong>jecture is true for n ≫ 2 deg f (circle method).<br />

[Birch, B. J.: Forms <strong>in</strong> many variables, Proc. Roy. Soc. Ser. A 265<br />

(1961/1962), 245–263]<br />

Man<strong>in</strong>’s c<strong>on</strong>jecture is established <strong>in</strong> many particular cases of low dimensi<strong>on</strong>,<br />

e.g.<br />

generalized flag varieties (Franke, Man<strong>in</strong>, Tsch<strong>in</strong>kel),<br />

projective smooth toric varieties (Batyrev and Tsch<strong>in</strong>kel),<br />

certa<strong>in</strong> toric fibrati<strong>on</strong>s over generalized flag varieties (Strauch and<br />

Tsch<strong>in</strong>kel),<br />

smooth equivariant compactificati<strong>on</strong>s of aff<strong>in</strong>e spaces (Chambert-Loir<br />

and Tsch<strong>in</strong>kel),<br />

P 2 Q blown-up <strong>in</strong> up to four po<strong>in</strong>ts <strong>in</strong> general positi<strong>on</strong> (Salberger, de<br />

la Bretèche).<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 9 / 36


What is known?<br />

Man<strong>in</strong>’s c<strong>on</strong>jecture is true for n ≫ 2 deg f (circle method).<br />

[Birch, B. J.: Forms <strong>in</strong> many variables, Proc. Roy. Soc. Ser. A 265<br />

(1961/1962), 245–263]<br />

Man<strong>in</strong>’s c<strong>on</strong>jecture is established <strong>in</strong> many particular cases of low dimensi<strong>on</strong>,<br />

e.g.<br />

generalized flag varieties (Franke, Man<strong>in</strong>, Tsch<strong>in</strong>kel),<br />

projective smooth toric varieties (Batyrev and Tsch<strong>in</strong>kel),<br />

certa<strong>in</strong> toric fibrati<strong>on</strong>s over generalized flag varieties (Strauch and<br />

Tsch<strong>in</strong>kel),<br />

smooth equivariant compactificati<strong>on</strong>s of aff<strong>in</strong>e spaces (Chambert-Loir<br />

and Tsch<strong>in</strong>kel),<br />

P 2 Q blown-up <strong>in</strong> up to four po<strong>in</strong>ts <strong>in</strong> general positi<strong>on</strong> (Salberger, de<br />

la Bretèche).<br />

If Man<strong>in</strong>’s c<strong>on</strong>jecture is true for X and Y then for X × Y , too (Franke,<br />

Man<strong>in</strong>, Tsch<strong>in</strong>kel).<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 9 / 36


What is known?<br />

Man<strong>in</strong>’s c<strong>on</strong>jecture is true for n ≫ 2 deg f (circle method).<br />

[Birch, B. J.: Forms <strong>in</strong> many variables, Proc. Roy. Soc. Ser. A 265<br />

(1961/1962), 245–263]<br />

Man<strong>in</strong>’s c<strong>on</strong>jecture is established <strong>in</strong> many particular cases of low dimensi<strong>on</strong>,<br />

e.g.<br />

generalized flag varieties (Franke, Man<strong>in</strong>, Tsch<strong>in</strong>kel),<br />

projective smooth toric varieties (Batyrev and Tsch<strong>in</strong>kel),<br />

certa<strong>in</strong> toric fibrati<strong>on</strong>s over generalized flag varieties (Strauch and<br />

Tsch<strong>in</strong>kel),<br />

smooth equivariant compactificati<strong>on</strong>s of aff<strong>in</strong>e spaces (Chambert-Loir<br />

and Tsch<strong>in</strong>kel),<br />

P 2 Q blown-up <strong>in</strong> up to four po<strong>in</strong>ts <strong>in</strong> general positi<strong>on</strong> (Salberger, de<br />

la Bretèche).<br />

If Man<strong>in</strong>’s c<strong>on</strong>jecture is true for X and Y then for X × Y , too (Franke,<br />

Man<strong>in</strong>, Tsch<strong>in</strong>kel).<br />

Man<strong>in</strong>’s c<strong>on</strong>jecture is open for smooth cubic surfaces. (There is, however,<br />

a lot of numerical evidence [Heath-Brown, Peyre-Tsch<strong>in</strong>kel].)<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 9 / 36


Numerical evidence for Man<strong>in</strong>’s C<strong>on</strong>jecture<br />

Experimental Result (E.+J.)<br />

There is numerical evidence for Man<strong>in</strong>’s C<strong>on</strong>jecture <strong>in</strong> the case of the hypersurfaces<br />

<strong>in</strong> P 4 Q given by ax e = by e + z e + v e + w e for e = 3 and 4.<br />

This requires algorithms to<br />

solve Diophant<strong>in</strong>e equati<strong>on</strong>s,<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 10 / 36


Numerical evidence for Man<strong>in</strong>’s C<strong>on</strong>jecture<br />

Experimental Result (E.+J.)<br />

There is numerical evidence for Man<strong>in</strong>’s C<strong>on</strong>jecture <strong>in</strong> the case of the hypersurfaces<br />

<strong>in</strong> P 4 Q given by ax e = by e + z e + v e + w e for e = 3 and 4.<br />

This requires algorithms to<br />

solve Diophant<strong>in</strong>e equati<strong>on</strong>s,<br />

compute Peyre’s c<strong>on</strong>stant,<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 10 / 36


Numerical evidence for Man<strong>in</strong>’s C<strong>on</strong>jecture<br />

Experimental Result (E.+J.)<br />

There is numerical evidence for Man<strong>in</strong>’s C<strong>on</strong>jecture <strong>in</strong> the case of the hypersurfaces<br />

<strong>in</strong> P 4 Q given by ax e = by e + z e + v e + w e for e = 3 and 4.<br />

This requires algorithms to<br />

solve Diophant<strong>in</strong>e equati<strong>on</strong>s,<br />

compute Peyre’s c<strong>on</strong>stant,<br />

detect accumulat<strong>in</strong>g subvarieties.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 10 / 36


An algorithm to solve Diophant<strong>in</strong>e equati<strong>on</strong>s I<br />

The follow<strong>in</strong>g example was our start<strong>in</strong>g po<strong>in</strong>t.<br />

Example (Sir P. Sw<strong>in</strong>nert<strong>on</strong>-Dyer, 2002)<br />

The equati<strong>on</strong><br />

def<strong>in</strong>es a K3 surface S <strong>in</strong> P 3 .<br />

x 4 + 2y 4 = z 4 + 4w 4<br />

(1 : 0 : 1 : 0) and (1 : 0 : (−1) : 0) are Q-rati<strong>on</strong>al po<strong>in</strong>ts <strong>on</strong> S, the two<br />

obvious po<strong>in</strong>ts.<br />

Is there another Q-rati<strong>on</strong>al po<strong>in</strong>t <strong>on</strong> S?<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 11 / 36


An algorithm to solve Diophant<strong>in</strong>e equati<strong>on</strong>s II<br />

How to f<strong>in</strong>d a soluti<strong>on</strong> of x 4 + 2y 4 = z 4 + 4w 4 ?<br />

Algorithm (A naive algorithm)<br />

Write x 4 + 2y 4 − 4w 4 = z 4 .<br />

Let x, y, and w run <strong>in</strong> a triple loop and test whether x 4 + 2y 4 − 4w 4 is a<br />

fourth power.<br />

Complexity: C ·B 3 .<br />

Realistic search bound: 50 000.<br />

(We did a trial run with search bound 10 000.)<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 12 / 36


An algorithm to solve Diophant<strong>in</strong>e equati<strong>on</strong>s III<br />

How to f<strong>in</strong>d a soluti<strong>on</strong> of x 4 + 2y 4 = z 4 + 4w 4 ?<br />

Algorithm (A better algorithm)<br />

The two sets {x 4 + 2y 4 | |x|, |y| ≤ B} and {z 4 + 4w 4 | |z|, |w| ≤ B} have<br />

∼B 2 elements each. List them and form their <strong>in</strong>tersecti<strong>on</strong>.<br />

Facts<br />

Complexity:<br />

Memory Usage: O(B 2 )<br />

O(B)<br />

O(B 2 log B) (us<strong>in</strong>g sort<strong>in</strong>g, D. Bernste<strong>in</strong>),<br />

O(B 2 ) (assum<strong>in</strong>g uniform hash<strong>in</strong>g, E.+J.).<br />

(naively),<br />

(D. Bernste<strong>in</strong>’s Algorithm—<br />

generates the sets <strong>in</strong> sorted order.)<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 13 / 36


Detecti<strong>on</strong> of soluti<strong>on</strong>s of Diophant<strong>in</strong>e equati<strong>on</strong>s—Hash<strong>in</strong>g<br />

Our method works for Diophant<strong>in</strong>e equati<strong>on</strong>s of the form<br />

f (x 1 , . . . , x k ) = g(y 1 , . . . , y l ).<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 14 / 36


Detecti<strong>on</strong> of soluti<strong>on</strong>s of Diophant<strong>in</strong>e equati<strong>on</strong>s—<br />

Hash<strong>in</strong>g II<br />

Writ<strong>in</strong>g<br />

We store the vectors (x 1 , . . . , x k ) <strong>in</strong> a hash table (with space for up to<br />

2 27 entries).<br />

The hash functi<strong>on</strong> H : Z → [0, 2 27 − 1] is given by a selecti<strong>on</strong> of bits, i.e.<br />

H(z) := a selecti<strong>on</strong> of bits of (z mod 2 64 ).<br />

For each vector (x 1 , . . . , x k ), the expressi<strong>on</strong> H(f (x 1 , . . . , x k )) def<strong>in</strong>es its positi<strong>on</strong><br />

<strong>in</strong> the hash table.<br />

Besides (x 1 , . . . , x k ), we also write a 31-bit c<strong>on</strong>trol value K(f (x 1 , . . . , x k )),<br />

K(z) := a selecti<strong>on</strong> of the rema<strong>in</strong><strong>in</strong>g bits of (z mod 2 64 ).<br />

Read<strong>in</strong>g<br />

Then, we search for vectors (y 1 , . . . , y l ) such that hash value and c<strong>on</strong>trol<br />

value do fit.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 15 / 36


Detecti<strong>on</strong> of soluti<strong>on</strong>s of Diophant<strong>in</strong>e equati<strong>on</strong>s—<br />

Hash<strong>in</strong>g III<br />

Remarks<br />

1 Assum<strong>in</strong>g uniform hash<strong>in</strong>g (which implies there are not too many soluti<strong>on</strong>s),<br />

the expected runn<strong>in</strong>g time is O(B max(k,l) ).<br />

C<strong>on</strong>gruence c<strong>on</strong>diti<strong>on</strong>s might help to reduce the O-factor.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 16 / 36


Detecti<strong>on</strong> of soluti<strong>on</strong>s of Diophant<strong>in</strong>e equati<strong>on</strong>s—<br />

Hash<strong>in</strong>g III<br />

Remarks<br />

1 Assum<strong>in</strong>g uniform hash<strong>in</strong>g (which implies there are not too many soluti<strong>on</strong>s),<br />

the expected runn<strong>in</strong>g time is O(B max(k,l) ).<br />

C<strong>on</strong>gruence c<strong>on</strong>diti<strong>on</strong>s might help to reduce the O-factor.<br />

2 The algorithm actually detects pseudo-soluti<strong>on</strong>s where a co<strong>in</strong>cidence of<br />

the c<strong>on</strong>trol values and an “almost co<strong>in</strong>cidence” of the hash values occurs.<br />

Some post process<strong>in</strong>g with an exact multiprecisi<strong>on</strong> calculati<strong>on</strong> is necessary<br />

(Aribas, GMP).<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 16 / 36


How to reduce memory usage when hash<strong>in</strong>g?<br />

Idea (Pag<strong>in</strong>g)<br />

Choose m ∈ Z sufficiently large. Form the sets<br />

L c := {f (x 1 , . . . , x k ) | |x 1 |, . . . , |x k | ≤ B, f (x 1 , . . . , x k ) ≡ c (mod m)}<br />

and<br />

R c := {g(y 1 , . . . , y l ) | |y 1 |, . . . , |y l | ≤ B, g(y 1 , . . . , y l ) ≡ c (mod m)}<br />

and work for each c separately.<br />

Memory usage: Reduced to B max(k,l) /m (assum<strong>in</strong>g equidistributi<strong>on</strong>).<br />

One may work <strong>in</strong> parallel <strong>on</strong> several mach<strong>in</strong>es.<br />

We choose m as a prime number, the page prime. Then, the Weil c<strong>on</strong>jectures,<br />

proven by P. Deligne, imply an a-priori estimate for the load factor of<br />

the hash tables.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 17 / 36


Equati<strong>on</strong> x 4 + 2y 4 = z 4 + 4w 4 —<br />

Optimizati<strong>on</strong> through c<strong>on</strong>gruence c<strong>on</strong>diti<strong>on</strong>s I<br />

x and z are odd. y and w are even.<br />

Case 1: 5|y, w (=⇒ 5∤x, z).<br />

Then, x 4 ≡ z 4 (mod 625).<br />

We write pairs (x, z) and hash x 4 − z 4 . We read 4w 4 − 2y 4 .<br />

Case 2: 5|x, y (=⇒ 5∤z, w).<br />

Then, z 4 + 4w 4 ≡ 0 (mod 625).<br />

Here, we write pairs (z, w) and hash z 4 + 4w 4 . We read x 4 + 2y 4 .<br />

These c<strong>on</strong>gruences are particularly str<strong>on</strong>g. They reduce the number of<br />

writ<strong>in</strong>g steps to 0.512% and the number of read<strong>in</strong>g steps to 4%.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 18 / 36


Equati<strong>on</strong> x 4 + 2y 4 = z 4 + 4w 4 —<br />

Optimizati<strong>on</strong> through c<strong>on</strong>gruence c<strong>on</strong>diti<strong>on</strong>s II<br />

Further c<strong>on</strong>gruences:<br />

Some c<strong>on</strong>gruence modulo 8:<br />

In Case 1, we always have 32|4w 4 − 2y 4 .<br />

x ≡ ±z (mod 8). This saves <strong>on</strong> writ<strong>in</strong>g.<br />

There is no such optimizati<strong>on</strong> for Case 2.<br />

But 32|x 4 − z 4 implies<br />

Some c<strong>on</strong>gruences modulo 81:<br />

In Case 1, 2y 4 − 4w 4 represents (0 mod 3) <strong>on</strong>ly trivially. Therefore,<br />

we do not need to write (x, z) when x 4 ≡ z 4 (mod 3) but<br />

x 4 ≢ z 4 (mod 81).<br />

In Case 2, there is a similar c<strong>on</strong>gruence which saves <strong>on</strong> the read<strong>in</strong>g step.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 19 / 36


A new soluti<strong>on</strong>—<br />

Answer to Sir P. Sw<strong>in</strong>nert<strong>on</strong>-Dyer’s questi<strong>on</strong><br />

Calculati<strong>on</strong><br />

==> 1484801**4 + 2 * 1203120**4.<br />

-: 90509 10498 47564 80468 99201<br />

==> 1169407**4 + 4 * 1157520**4.<br />

-: 90509 10498 47564 80468 99201<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 20 / 36


A new soluti<strong>on</strong>—<br />

Answer to Sir P. Sw<strong>in</strong>nert<strong>on</strong>-Dyer’s questi<strong>on</strong><br />

Calculati<strong>on</strong><br />

==> 1484801**4 + 2 * 1203120**4.<br />

-: 90509 10498 47564 80468 99201<br />

==> 1169407**4 + 4 * 1157520**4.<br />

-: 90509 10498 47564 80468 99201<br />

Theorem (E.+J.)<br />

Up to changes of sign, (1 484 801 : 1 203 120 : 1 169 407 : 1 157 520) is the<br />

<strong>on</strong>ly n<strong>on</strong>-obvious Q-rati<strong>on</strong>al po<strong>in</strong>t of height ≤ 10 8 <strong>on</strong> Sir P. Sw<strong>in</strong>nert<strong>on</strong>-<br />

Dyer’s surface S.<br />

This means, <strong>on</strong> S there exist precisely ten Q-rati<strong>on</strong>al po<strong>in</strong>ts of height ≤ 10 8 .<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 20 / 36


A new soluti<strong>on</strong>—<br />

Answer to Sir P. Sw<strong>in</strong>nert<strong>on</strong>-Dyer’s questi<strong>on</strong> II<br />

Remarks<br />

The new soluti<strong>on</strong> was found <strong>on</strong> December 2, 2004 by an <strong>in</strong>termediate<br />

versi<strong>on</strong> of our programs for search bound 2.5 · 10 6 .<br />

The f<strong>in</strong>al versi<strong>on</strong> of the programs (for search bound 10 8 ) took almost<br />

exactly 100 days of CPU time <strong>on</strong> an AMD Opter<strong>on</strong> 248 processor.<br />

This time is composed almost equally of 50 days for Case 1 and 50 days<br />

for Case 2.<br />

We executed our computati<strong>on</strong>s at the Gött<strong>in</strong>gen Gauß Laboratory<br />

for Scientific Comput<strong>in</strong>g. The ma<strong>in</strong> computati<strong>on</strong> was run <strong>on</strong> a Sun<br />

Fire V20z Server <strong>in</strong> parallel <strong>on</strong> two processors dur<strong>in</strong>g February and<br />

March, 2005.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 21 / 36


Man<strong>in</strong>’s C<strong>on</strong>jecture—Peyre’s c<strong>on</strong>stant I<br />

Recall, we c<strong>on</strong>sider the hypersurfaces <strong>in</strong> P 4 Q given by<br />

ax e − by e = z e + v e + w e<br />

for e = 3 and 4.<br />

Remarks<br />

1 Search for Q-rati<strong>on</strong>al po<strong>in</strong>ts is obviously of complexity O(B 3 ).<br />

2 When c<strong>on</strong>sider<strong>in</strong>g O(B) varieties (differ<strong>in</strong>g <strong>on</strong>ly by a and b), simultaneously,<br />

then the runn<strong>in</strong>g-time is still O(B 3 ).<br />

We c<strong>on</strong>sidered the varieties with a, b = 1, . . . , 100 (i.e. 5 000 cubics<br />

and 10 000 quartics) with a search bound of 5 000 (cubics) and 100 000<br />

(quartics), respectively.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 22 / 36


Man<strong>in</strong>’s C<strong>on</strong>jecture—Peyre’s c<strong>on</strong>stant II<br />

C<strong>on</strong>jecture (Man<strong>in</strong>’s C<strong>on</strong>jecture—Versi<strong>on</strong> for hypersurfaces <strong>in</strong> P n )<br />

Let the smooth variety V f ⊂ P n be given by f = 0. Then,<br />

#{(x 0 , . . . , x n ) ∈ V ◦ (Q) | |x 0 |, . . . , |x n | ≤ B} ∼ C ·B k log r−1 B,<br />

for k = n + 1 − deg(f ) and r = rk Pic V .<br />

Here, C is an explicit c<strong>on</strong>stant (due to E. Peyre),<br />

[Peyre, E.: Hauteurs et mesures de Tamagawa sur les variétés de Fano,<br />

Duke Math. J. 79 (1995), 101–218, Déf<strong>in</strong>iti<strong>on</strong> 2.3].<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 23 / 36


Man<strong>in</strong>’s C<strong>on</strong>jecture—Peyre’s c<strong>on</strong>stant III<br />

Def<strong>in</strong>iti<strong>on</strong> (Peyre’s c<strong>on</strong>stant)<br />

For n ≥ 4, Peyre’s c<strong>on</strong>stant is the Tamagawa-type number<br />

C :=<br />

∏ (<br />

1 − 1 )<br />

τ p<br />

p<br />

p∈P∪{∞}<br />

where<br />

and<br />

#V (Z/p m Z)<br />

τ p = lim<br />

m→∞ p m dim(V )<br />

τ ∞ = 1 2<br />

∫<br />

f (x 0 ,...,xn)=0<br />

|x 0 |,...,|xn|≤1<br />

for p ∈ P<br />

1<br />

∂f<br />

∂x j<br />

dx 0 . . . ̂dx j . . . dx n .<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 24 / 36


An algorithm to count soluti<strong>on</strong>s I<br />

Remark<br />

To compute Peyre’s c<strong>on</strong>stant,<br />

the <strong>in</strong>f<strong>in</strong>ite place and primes of bad reducti<strong>on</strong> require some programm<strong>in</strong>g<br />

efforts.<br />

But the ma<strong>in</strong> work to be d<strong>on</strong>e is <strong>on</strong> good primes where <strong>on</strong>e has to<br />

count soluti<strong>on</strong>s of the same equati<strong>on</strong> f (x 0 , . . . , x n ) = 0 but over f<strong>in</strong>ite<br />

fields F p <strong>in</strong>stead of Z.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 25 / 36


An algorithm to count soluti<strong>on</strong>s II<br />

C<strong>on</strong>sider an equati<strong>on</strong> of the form<br />

(∗)<br />

n∑<br />

f i (x i ) = 0.<br />

i=0<br />

Denote by d (i) (k) := #{x ∈ F p | f i (x) = k} the numbers of representati<strong>on</strong>s.<br />

Then, the number of soluti<strong>on</strong>s of (∗) is equal to<br />

(d (0) ∗ d (1) ∗ . . . ∗ d (n) )(0).<br />

Idea (of the algorithm to compute Peyre’s c<strong>on</strong>stant)<br />

Use FFT to compute the c<strong>on</strong>voluti<strong>on</strong> d (0) ∗ d (1) ∗ . . . ∗ d (n) .<br />

Remarks (Complexity)<br />

We need to compute n c<strong>on</strong>voluti<strong>on</strong>s of vectors of length p.<br />

A c<strong>on</strong>voluti<strong>on</strong> takes O(p log p) steps.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 26 / 36


Investigati<strong>on</strong> of the cubic threefolds I<br />

We determ<strong>in</strong>ed all Q-rati<strong>on</strong>al po<strong>in</strong>ts of height less than 5 000 <strong>on</strong> the cubic<br />

threefolds V 3 a,b given by ax 3 = by 3 + z 3 + v 3 + w 3<br />

for a, b = 1, . . . , 100 and b ≤ a.<br />

<str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> ly<strong>in</strong>g <strong>on</strong> a Q-rati<strong>on</strong>al l<strong>in</strong>e <strong>in</strong> V a,b were excluded from the count.<br />

The smallest number of po<strong>in</strong>ts found is 3 930 278 for (a, b) = (98, 95).<br />

The largest numbers of po<strong>in</strong>ts are 332 137 752 for (a, b) = (7, 1) and<br />

355 689 300 <strong>in</strong> the case that a = 1 and b = 1.<br />

On the other hand, for each threefold Va,b 3 where a, b = 1, . . . , 100<br />

and b + 3 ≤ a, we calculated the number of po<strong>in</strong>ts expected (accord<strong>in</strong>g<br />

to Man<strong>in</strong>-Peyre) and the quotients<br />

# { po<strong>in</strong>ts of height < B found } / # { po<strong>in</strong>ts of height < B expected }.<br />

Let us visualize the quotients by two histograms.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 27 / 36


Investigati<strong>on</strong> of the cubic threefolds II<br />

250<br />

250<br />

200<br />

200<br />

150<br />

150<br />

100<br />

100<br />

50<br />

50<br />

0<br />

0.88 0.9 0.92 0.94 0.96 0.98 1 1.02 0<br />

0.88 0.9 0.92 0.94 0.96 0.98 1 1.02<br />

Figure: Distributi<strong>on</strong> of the quotients for B = 1 000 and B = 5 000.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 28 / 36


Investigati<strong>on</strong> of the cubic threefolds III<br />

Table: Parameters of the distributi<strong>on</strong> <strong>in</strong> the cubic case<br />

B = 1 000 B = 2 000 B = 5 000<br />

mean value 0.981 79 0.988 54 0.993 83<br />

standard deviati<strong>on</strong> 0.012 74 0.008 23 0.004 55<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 29 / 36


Investigati<strong>on</strong> of the quartic threefolds I<br />

We determ<strong>in</strong>ed all Q-rati<strong>on</strong>al po<strong>in</strong>ts of height less than 100 000 <strong>on</strong> the<br />

quartic threefolds Va,b 4 given by<br />

for a, b = 1, . . . , 100.<br />

ax 4 = by 4 + z 4 + v 4 + w 4<br />

It turns out that <strong>on</strong> 5 015 of these varieties, there are no Q-rati<strong>on</strong>al<br />

po<strong>in</strong>ts occurr<strong>in</strong>g at all as the equati<strong>on</strong> is unsolvable <strong>in</strong> Q p for p = 2,<br />

5, or 29. In this situati<strong>on</strong>, Man<strong>in</strong>’s c<strong>on</strong>jecture is true, trivially.<br />

For the rema<strong>in</strong><strong>in</strong>g varieties, the po<strong>in</strong>ts ly<strong>in</strong>g <strong>on</strong> a known Q-rati<strong>on</strong>al c<strong>on</strong>ic<br />

<strong>in</strong> V a,b were excluded from the count.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 30 / 36


Investigati<strong>on</strong> of the quartic threefolds II<br />

Table: Numbers of po<strong>in</strong>ts of height < 100 000 <strong>on</strong> the quartics.<br />

a b # po<strong>in</strong>ts # not <strong>on</strong> c<strong>on</strong>ic # expected<br />

(by Man<strong>in</strong>-Peyre)<br />

29 29 2 2 135<br />

58 87 288 288 272<br />

58 58 290 290 388<br />

87 87 386 386 357<br />

. .<br />

.<br />

.<br />

.<br />

34 1 9 938 976 5 691 456 5 673 000<br />

17 64 5 708 664 5 708 664 5 643 000<br />

1 14 7 205 502 6 361 638 6 483 000<br />

3 1 12 657 056 7 439 616 7 526 000<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 31 / 36


Investigati<strong>on</strong> of the quartic threefolds III<br />

7<br />

7<br />

6<br />

6<br />

5<br />

5<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0<br />

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 0<br />

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2<br />

Figure: Distributi<strong>on</strong> of the quotients for B = 1 000 and B = 10 000.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 32 / 36


Investigati<strong>on</strong> of the quartic threefolds IV<br />

20<br />

20<br />

15<br />

15<br />

10<br />

10<br />

5<br />

5<br />

0 0.7 0.8 0.9 1 1.1 1.2 1.3 0 0.7 0.8 0.9 1 1.1 1.2 1.3<br />

Figure: Distributi<strong>on</strong> of the quotients for B = 50 000 and B = 100 000.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 33 / 36


Investigati<strong>on</strong> of the quartic threefolds V<br />

Table: Parameters of the distributi<strong>on</strong> <strong>in</strong> the quartic case<br />

B = 1 000 B = 10 000 B = 100 000<br />

mean value 0.9853 0.9957 0.9982<br />

standard deviati<strong>on</strong> 0.3159 0.1130 0.0372<br />

Remark<br />

In the cubic case, presented before, the standard deviati<strong>on</strong> is by far smaller<br />

than <strong>in</strong> the case of the quartics.<br />

This is not very surpris<strong>in</strong>g as <strong>on</strong> a cubic there tend to be much more rati<strong>on</strong>al<br />

po<strong>in</strong>ts than <strong>on</strong> a quartic (quadratic growth versus l<strong>in</strong>ear growth). Thus, <strong>in</strong><br />

the case of the cubic the sample is more reliable.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 34 / 36


Investigati<strong>on</strong> of the quartic threefolds VI<br />

search limit 50000 - color represents quotient at limit 10000<br />

quotients<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

100 1000 10000 100000 1000000 10000000<br />

number of soluti<strong>on</strong>s<br />

Figure: number of soluti<strong>on</strong>s and quotients for B = 50 000.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 35 / 36


Summary<br />

Summary<br />

To search systematically for soluti<strong>on</strong>s of Diophant<strong>in</strong>e equati<strong>on</strong>s like<br />

x 4 + 2y 4 = z 4 + 4w 4 or 7x 3 = 11y 3 + z 3 + v 3 + w 3 (n ≥ 4 variables),<br />

there are ways faster than the obvious (n − 1)-times iterated loop.<br />

(Essentially, we need O(B ⌈n/2⌉ ) steps).<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 36 / 36


Summary<br />

Summary<br />

To search systematically for soluti<strong>on</strong>s of Diophant<strong>in</strong>e equati<strong>on</strong>s like<br />

x 4 + 2y 4 = z 4 + 4w 4 or 7x 3 = 11y 3 + z 3 + v 3 + w 3 (n ≥ 4 variables),<br />

there are ways faster than the obvious (n − 1)-times iterated loop.<br />

(Essentially, we need O(B ⌈n/2⌉ ) steps).<br />

To count soluti<strong>on</strong>s over F p (without determ<strong>in</strong><strong>in</strong>g all of them) is even<br />

faster (O(np log p) steps).<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 36 / 36


Summary<br />

Summary<br />

To search systematically for soluti<strong>on</strong>s of Diophant<strong>in</strong>e equati<strong>on</strong>s like<br />

x 4 + 2y 4 = z 4 + 4w 4 or 7x 3 = 11y 3 + z 3 + v 3 + w 3 (n ≥ 4 variables),<br />

there are ways faster than the obvious (n − 1)-times iterated loop.<br />

(Essentially, we need O(B ⌈n/2⌉ ) steps).<br />

To count soluti<strong>on</strong>s over F p (without determ<strong>in</strong><strong>in</strong>g all of them) is even<br />

faster (O(np log p) steps).<br />

These two observati<strong>on</strong>s together may be used to test Man<strong>in</strong>’s c<strong>on</strong>jecture,<br />

numerically.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 36 / 36


Summary<br />

Summary<br />

To search systematically for soluti<strong>on</strong>s of Diophant<strong>in</strong>e equati<strong>on</strong>s like<br />

x 4 + 2y 4 = z 4 + 4w 4 or 7x 3 = 11y 3 + z 3 + v 3 + w 3 (n ≥ 4 variables),<br />

there are ways faster than the obvious (n − 1)-times iterated loop.<br />

(Essentially, we need O(B ⌈n/2⌉ ) steps).<br />

To count soluti<strong>on</strong>s over F p (without determ<strong>in</strong><strong>in</strong>g all of them) is even<br />

faster (O(np log p) steps).<br />

These two observati<strong>on</strong>s together may be used to test Man<strong>in</strong>’s c<strong>on</strong>jecture,<br />

numerically.<br />

Remark (C<strong>on</strong>clusi<strong>on</strong>)<br />

The results suggest that Man<strong>in</strong>’s c<strong>on</strong>jecture should be true for the two<br />

families of threefolds c<strong>on</strong>sidered.<br />

Jörg Jahnel (Universität Gött<strong>in</strong>gen) <str<strong>on</strong>g>Rati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>Po<strong>in</strong>ts</str<strong>on</strong>g> <strong>on</strong> <strong>Hypersurfaces</strong> 25. 07. 2006 36 / 36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!