25.10.2014 Views

中性子の将来計画 - 東京大学素粒子物理国際研究センター

中性子の将来計画 - 東京大学素粒子物理国際研究センター

中性子の将来計画 - 東京大学素粒子物理国際研究センター

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Energy<br />

TeV<br />

Fundamental<br />

CP phases<br />

<br />

<br />

<br />

<br />

<br />

QCD<br />

gluon<br />

self-couplings<br />

Muon EDM<br />

nuclear<br />

eN couplings<br />

Neutron<br />

EDM ( )<br />

EDMs of nuclei<br />

and ions<br />

(deuteron, etc)<br />

<br />

atomic<br />

EDMs of paramagnetic<br />

molecules<br />

(YbF, PbO, HfF + )<br />

Atoms in traps (Tl,Rb,Cs)<br />

EDMs of diamagnetic<br />

atoms (Hg,Xe,Ra,Rn)<br />

Pospelov Ritz, Ann Phys 318 (05) 119


!<br />

"<br />

s,b<br />

s,b<br />

W + d ~ ! 0<br />

~<br />

d<br />

d<br />

d<br />

u<br />

c,t<br />

W-<br />

c,t<br />

d<br />

d<br />

u<br />

d<br />

d<br />

u<br />

d<br />

d<br />

u


!<br />

<br />

<br />

<br />

<br />

<br />

"<br />

<br />

s,b<br />

s,b<br />

<br />

~<br />

d<br />

W + d ~ ! 0<br />

d<br />

d<br />

u<br />

c,t<br />

W-<br />

c,t<br />

d<br />

d<br />

u<br />

d<br />

d<br />

u<br />

<br />

d<br />

d<br />

u<br />

<br />

(Baker et al., PRL97 (2006) 131801)


(Baker et al., PRL97 (2006) 131801)


d n = (+0.2 ± 1.5(stat) ± 0.7(syst)) × 10 −26 e · cm<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ω ±<br />

2π<br />

=3× 101<br />

B<br />

1µT ± 5 × 10−8 d n<br />

10 −26 e · cm<br />

E<br />

10kV/cm


"#$$%&'(&)*+ %,-%$./%&'(0'(122(11<br />

+#D/%'07(?D=9.%7B=<br />

Mu-metal<br />

34(.&<br />

? @<br />

A.%7B(5


Effect Shift at ILL at PSI at J-P ARC<br />

(storage volume 1000 cm 3 )<br />

a Door cavity dip ole -5.6 2.0 0.10 0.036<br />

b Other dip ole fields 0.0 6.0 0.40 0.144<br />

c Quadrupole difference -1.3 2.0 0.60 0.216<br />

d Uncomp ensated B drift 0.0 2.4 0.90 0.324<br />

e Leakage curren ts 0.0 0.1 0.10 0.036<br />

f v E (translational) 0.0 0.03 0.03 0.03<br />

g v E (rotational) 0.0 1.00 0.10 0.10<br />

h Second-order v E 0.0 0.02 0.02 0.02<br />

i Hg light shift (geo phase) 3.5 0.8 0.40 0.20<br />

j Hg light shift (direct) 0.0 0.2 0.20 0.072<br />

k Hg atom EDM -0.4 0.3 0.06 0.06<br />

l Electric forces 0.0 0.4 0.40 0.14<br />

m ac fields 0.0 0.01 0.01 0.01<br />

Total -3.8 7.2 1.31 0.67<br />

Table 1: Summary of systematic errors (10 -27<br />

e·cm).


µ <br />

<br />

<br />

<br />

<br />

<br />

<br />

n<br />

n<br />

<br />

<br />

<br />

<br />

n<br />

n




2m 3<br />

vacuum<br />

UCN<br />

storage<br />

<br />

30 liters, 5K<br />

solid D 2<br />

p-beam<br />

1.3 MW<br />

1% duty cycle<br />

3.6 m 2<br />

D 2 O


2m 3<br />

vacuum<br />

UCN<br />

storage<br />

<br />

30 liters, 5K<br />

solid D 2<br />

p-beam<br />

1.3 MW<br />

1% duty cycle<br />

3.6 m 2<br />

D 2 O


2m 3<br />

vacuum<br />

UCN<br />

storage<br />

<br />

30 liters, 5K<br />

solid D 2<br />

p-beam<br />

1.3 MW<br />

1% duty cycle<br />

3.6 m 2<br />

D 2 O


Table 4.2: Estimation of required size of the radiation shield.<br />

<br />

beam power of 20 kW.<br />

Under these assumptions, the minimum radiation shield is 117m 3 (916 tons) of iron<br />

<br />

and 147m 3 (324 tons) of concrete as shown in Fig. 4.10. The rectangular hexahedron<br />

tangential to the minimum column is 150m 3 (1150 ton) of iron and 169m 3 (373 ton) of<br />

concrete.<br />

<br />

Figure 4.10: Configuration and outer dimension of the 20 kW UCN source with the<br />

<br />

neutron production target, moderator, reflector, converter and radiation shield with the<br />

<br />

surface dose rate of 1µSv/h. In this example, the radiation shield on the left rear is


Specification of J-PARC Linac<br />

Proton Energy 400MeV(at 2013?)<br />

Pulse width<br />

Repetition<br />

Peak Proton Current<br />

Average Current<br />

Peak Power<br />

Average Power<br />

0.5 ms<br />

25 Hz<br />

50 mA<br />

0.625 mA<br />

20 MW<br />

250 kW<br />

Moderation<br />

~1.4ms


Production Rate<br />

• Cold Neutron Flux<br />

Φ boltzmann = 6.2 x 10^11 n/cm2/pulse<br />

• Production Rate1.0x10 -8 Φ boltzmann <br />

– ρ UCN = 6200 UCN/cm 3 /pulse (Boltzmann)<br />

Heat load<br />

• Heat load on D 2 cell is 3W/pulse.<br />

It correspond to 152mK/pulse<br />

20MWDC1300K


not different from continuous UCNs ...<br />

Peak proton power = 20MW<br />

Average proton power = 250kW


e-shaping to sharp pulse<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

take in pulsed UCN<br />

while door is open<br />

the door closes,<br />

UCNs broaden<br />

in the bottle<br />

take in next pulsed UCN.<br />

some UCNs overflow,<br />

the others stay.<br />

the door closes,<br />

the density increases<br />

by the pulse


Rebuncher reshapes UCNs into sharp pulse.<br />

x<br />

door position<br />

Rebuncher<br />

fast UCN<br />

slow UCN<br />

UCN production<br />

at converter<br />

Rebuncer decelerates the UCNs according to the velocity,<br />

t


Rebuncher reshapes UCNs into sharp pulse.<br />

x<br />

door position<br />

Rebuncher<br />

fast UCN<br />

slow UCN<br />

UCN production<br />

at converter<br />

Rebuncer decelerates the UCNs according to the velocity,<br />

t


0<br />

<br />

-100<br />

1000 1200 1400<br />

C:\LANL\NEDM\FILPA0A.AF 6-10-2010 0:23:28<br />

<br />

100<br />

100<br />

0<br />

C:\LANL\NEDM\FILPA33A.AF 6-10-2010 0:55:30<br />

1200 1400<br />

1000<br />

-100<br />

1000 1200 1400<br />

0<br />

C:\LANL\NEDM\FILPA33A.AF 6-10-2010 0:55:30<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

100<br />

C:\LANL\NEDM\FILPA0A.AF 6-10-2010 0:23:28<br />

<br />

1000 1200 1400<br />

-100<br />

0<br />

100


K 2 = ω Larmor<br />

ω B<br />

=<br />

<br />

<br />

<br />

γ n B 2 1<br />

v n (∂B/∂z) ≥ 6.5 (v n ≤ 7.2m/s)


K 2 = ω Larmor<br />

ω B<br />

=<br />

<br />

<br />

<br />

γ n B 2 1<br />

v n (∂B/∂z) ≥ 6.5 (v n ≤ 7.2m/s)


K 2 = ω Larmor<br />

ω B<br />

=<br />

<br />

<br />

<br />

γ n B 2 1<br />

v n (∂B/∂z) ≥ 6.5 (v n ≤ 7.2m/s)


K 2 = ω Larmor<br />

ω B<br />

=<br />

<br />

<br />

<br />

γ n B 2 1<br />

v n (∂B/∂z) ≥ 6.5 (v n ≤ 7.2m/s)


1100<br />

High voltage lead<br />

Mercury<br />

polarizing cell<br />

<br />

<br />

14 CHAPTER 3. MEASUREMENT OF NEUTRON EDM<br />

<br />

Magnetic field coil<br />

Electrodes<br />

UCN shutter<br />

Storage cell<br />

Vacuum chamber<br />

160<br />

120<br />

270<br />

1200<br />

1900<br />

UCN shutter<br />

Rotary UCN shutter<br />

Multi layer<br />

magnetic sheild<br />

UCN detectors<br />

1 m<br />

<br />

<br />

<br />

Figure 3.3: EDM measurement system.


R&D setup @ RIKEN<br />

!"#$%&'("$&)*+,-"./<br />

!"#$%&'(#)*++<br />

<br />

<br />

08(7(&%"(%#<br />

$"4#,1&=($,1"2#1<br />

<br />

0($,1"2,3(4&&<br />

5(%6$,7(1<br />

<br />

<br />

<br />

<br />

:,.#1&.;.7#<<br />

5,94#3'&.8"#$%&<br />

,.!"<br />

,-!"<br />

,.!"<br />

<br />

<br />

/-#012


R&D setup @ RIKEN<br />

!"#$%&'("$&)*+,-"./<br />

!"#$%&'(#)*++<br />

<br />

<br />

<br />

<br />

<br />

<br />

08(7(&%"(%#<br />

$"4#,1&=($,1"2#1<br />

0($,1"2,3(4&&<br />

5(%6$,7(1<br />

5,94#3'&.8"#$%&<br />

<br />

:,.#1&.;.7#<<br />

,-!"<br />

,.!"<br />

,.!"<br />

<br />

<br />

<br />

/-#012


phase.<br />

Figure 1.1: Statistical and systematic errors extrapolated from the result of the ILL<br />

experiment [11] as a function of the radius of the cylindrical storage cell . The reflectivity<br />

<br />

of the inner surface is assumed to be optimized for the precession time of 130 s.


10 -21 10 -21<br />

10 -22 10 -22<br />

10 -23 10 -23<br />

10 -24 10 -24<br />

<br />

10 -25 10 -25<br />

10 -21<br />

10 -22<br />

<br />

10 -23<br />

<br />

10 -24<br />

10 -25<br />

10 -26 10 -26 10 -26<br />

10 -27 10 -27 10 -27<br />

10 -21<br />

<br />

10 -22<br />

10 -23<br />

10 -24<br />

<br />

10 -25<br />

10 -26<br />

10 -27<br />

10 -21<br />

10 -22<br />

10 -23<br />

10 -24<br />

10 -25<br />

10 -26<br />

<br />

<br />

<br />

<br />

<br />

10 -27<br />

10 -28 10 -28 10 -28 10 -28 10 -28<br />

10 -29 10 -29 10 -29 10 -29 10 -29<br />

10 -30 10 -30 10 -30 10 -30 10 -30<br />

10 -31 10 -31 10 -31 10 -31 10 -31<br />

10 -21<br />

10 -22<br />

10 -23<br />

10 -24<br />

10 -25<br />

10 -26<br />

10 -27<br />

10 -28<br />

10 -29<br />

10 -30<br />

10 -31<br />

10 -21<br />

10 -22<br />

10 -23<br />

10 -24<br />

<br />

<br />

10 -25<br />

10 -26<br />

10 -27<br />

10 -28<br />

<br />

10 -29<br />

10 -30<br />

10 -31<br />

2012 2013 2014 2015 2016 2017<br />

2018<br />

<br />

<br />

<br />

<br />

10 -20 10 -20<br />

1950 1950 1960 1960 1970 1970 1980 1980 1990 1990 2000 2000 2010 2010 2020 2020<br />

10 -20 10 -20 10 -20 10 -20 10 -20<br />

1950 1950 1960 1950 1960 1970 1950 1960 1970 1980 1950 1960 1970 1980 1990 1960 1970 1980 1990 2000 1970 1980 1990 2000 2010 1980 199 200 201 202


Mirror<br />

<br />

Lab<br />

<br />

Neutron


Mirror<br />

<br />

Lab<br />

<br />

Neutron


Mirror<br />

<br />

Lab<br />

<br />

Neutron


Mirror<br />

<br />

Lab<br />

<br />

Neutron


Mirror<br />

<br />

Lab<br />

<br />

Neutron


Mirror<br />

<br />

Lab<br />

<br />

Neutron


Mirror<br />

Ni mirror on Si(0.3mm)


Mirror<br />

Ni mirror on Si(0.3mm)


Mirror<br />

Ni mirror on Si(0.3mm)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!