23.01.2015 Views

暗黒エネルギーとすばる - 東京大学素粒子物理国際研究センター

暗黒エネルギーとすばる - 東京大学素粒子物理国際研究センター

暗黒エネルギーとすばる - 東京大学素粒子物理国際研究センター

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

UC Berkeley<br />

2010410


• ~0.5%<br />

• ~0.1–1.5%<br />

• 4.5%<br />

• 22%<br />

• 74%<br />

<br />

• 0%


• ~0.5%<br />

• ~0.1–1.5%<br />

• 4.5%<br />

• 22%<br />

• 74%<br />

<br />

• 0%


()


IRCS (AO188)<br />

Infrared imager and<br />

spectrograph (#/$#=20,000)<br />

HiCIAO (AO188)<br />

Coronagraphic imager with<br />

differential imaging<br />

techniques<br />

AO188<br />

188-element<br />

curvature<br />

sensing<br />

adaptive optics<br />

system with a<br />

laser guide star<br />

capability<br />

Nasmyth<br />

Focus<br />

Cassegrain<br />

Focus<br />

Prime<br />

Focus<br />

Illustration by Takaetsu Endo,<br />

taken from Nikkei Science 1996 <br />

Suprime-Cam<br />

Optical imager (34!"27!)<br />

Nasmyth<br />

Focus<br />

8-10m class<br />

<br />

HDS<br />

Optical spectrograph<br />

(#/$#=100,000)<br />

FOCAS<br />

Optical imager and<br />

spectrograph<br />

COMICS<br />

IR imager and spectrograph<br />

MOIRCS<br />

NIR imager (7!"4!) and multiobject<br />

(50)<br />

5<br />

spectrograph


~100Mpc(~300M light year)@z~0.5~5deg<br />

Hyper-SC<br />

<br />

<br />

SC<br />

<br />

<br />

Other 8m Tels


• Ia<br />

<br />

Ia


Ia<br />

• Ia<br />

<br />


Ia<br />

• Ia<br />

<br />

• <br />


Ia<br />

• Ia<br />

<br />

• <br />

• <br />

<br />


Ia<br />

• Ia<br />

<br />

• <br />

• <br />

<br />

• <br />

<br />


Ω Λ<br />

1.5<br />

Supernova Cosmology Project<br />

Kowalski, et al., Ap.J. (2008)<br />

Union 08<br />

SN Ia<br />

compilation<br />

1.0<br />

SNe<br />

0.5<br />

BAO<br />

0.0<br />

0.0 0.5 1.0<br />

Ω m<br />

Flat<br />

CMB<br />

acceleration<br />

decceleration<br />

• <br />

<br />

<br />

• <br />

<br />

• <br />

• <br />

<br />

• <br />


E = 1 2 mȧ2 − G Nm<br />

a<br />

4π<br />

3 a3 ρ m<br />

a<br />

a<br />

ȧ<br />

a 2<br />

= 8π 3 G N ρ m − k a 2<br />

• <br />

• <br />

a(t)<br />

E>0, k=–1<br />

E>0, k=0<br />

E


• (70)


• (70)<br />


• (70)<br />

• <br />


• (70)<br />

• <br />

• <br />


• (70)<br />

• <br />

• <br />

• <br />


• (70)<br />

• <br />

• <br />

• <br />

• <br />


• (70)<br />

• <br />

• <br />

• <br />

• <br />


• (70)<br />

• <br />

• <br />

• <br />

• <br />


Friedmann<br />

ȧ<br />

a 2<br />

= 8π 3 G Nρ − k a 2 + Λ 3<br />

= H 2 0<br />

<br />

Ωrad<br />

a 4<br />

+ Ω m<br />

a 3<br />

+ Ω k<br />

a 2 +<br />

Ω <br />

DE<br />

a −3(1+w)<br />

• <br />

<br />

<br />

˙ρ = −3H(p + ρ) =−3H(w + 1)ρ<br />

ρ = ρ 0 a −3(w+1) , ρa 3 = ρ 0 a −3w<br />

ȧ ∝ a −(1+3w)/2<br />

ä ∝−(1 + 3w) > 0 → w


• <br />

<br />

<br />

• <br />


• <br />

<br />

<br />

• <br />


• <br />

<br />

<br />

• <br />


• <br />

(w


• <br />

(w


• <br />

(w


• <br />

<br />

• “quintessence”<br />

• m≈H0≈(TeV 8 /MPl 6 )<br />

≈10 –84 GeV<br />

• hierarchy problem<br />

• w>–1


landscape<br />

• ρΛ≈MPl 4 ≈10 120 ρΛobs<br />

• <br />

<br />

• <br />

ρΛ


Cosmic Coincidence<br />

Problem<br />

• ρΛ≈(2meV) 4 ≈(TeV 2 /MPl) 4<br />

• DMTeV-scale WIMP<br />

ρm≈(TeV 2 /MPl)T 3<br />

• <br />

T≈(TeV 2 /MPl)≈10K<br />

• <br />

<br />

<br />

! [GeV cm –3 ]<br />

10 67<br />

10 61<br />

10 55<br />

10 49<br />

10 43<br />

10 37<br />

10 31<br />

10 25<br />

10 19<br />

10 13<br />

10 7<br />

10 1<br />

10 –5<br />

10 ! –11<br />

10 "<br />

–17<br />

10 –23<br />

10 –29<br />

10 –35<br />

10 –41<br />

10 –18<br />

10 6<br />

10 4<br />

T now<br />

! radiation<br />

! matter<br />

10 2<br />

10 0<br />

10 –2 10 –4<br />

T [GeV]<br />

10 –6 10 –8 10 –10 10 –12 10 –14 10 –16


• <br />

• <br />

<br />

• w=–p/ρ=w(a) <br />

• Dark Energy Task Force (NASA+DOE+NSF<br />

panel) parameterization<br />

w(a) =w 0 + w a (1 − a)


• <br />

• <br />

<br />

• w=–p/ρ=w(a) <br />

• Dark Energy Task Force (NASA+DOE+NSF<br />

panel) parameterization<br />

w(a) =w 0 + w a (1 − a)


• <br />

• redshift <br />

• a/a0 = 1/(1+z)<br />

• <br />

• standard candle: SNe<br />

• standard ruler: BAO


ds 2 = dt 2 − a(t) 2 dr<br />

2<br />

1 − kr 2 + r2 d 2 Ω<br />

<br />

• comoving (proper) distance<br />

ds 2 =0−→ d =<br />

• luminosity distance<br />

• angular diameter distance<br />

<br />

<br />

dr<br />

√<br />

1 − kr<br />

2 =<br />

d L = d(1 + z)<br />

d A = d/(1 + z)<br />

<br />

dt<br />

a(t) =<br />

dz<br />

H(z)


• growth factor g(z)<br />

¨g +2Hġ =4πG N ρ m g = 3Ω mH 2 0<br />

2a 3<br />

• H <br />

g<br />

• exponential<br />

• matter dominant<br />

<br />


4<br />

• SN (Type-Ia supernovae)<br />

• CL (cluster survey)<br />

• WL (weak lensing)<br />

• BAO (baryon acoustic oscillation)


4<br />

• SN (Type-Ia supernovae)<br />

• CL (cluster survey)<br />

• WL (weak lensing)<br />

systematics<br />

(DETF)<br />

• BAO (baryon acoustic oscillation)


Weak Lensing


Abell


y<br />

(x,y)<br />

x<br />

r r0<br />

d 1 lens d 2<br />

<br />

<br />

star


1<br />

y<br />

(x,y)<br />

x<br />

r r0<br />

star<br />

d 1 lens d -1 -0.5 0.5 1<br />

2<br />

<br />

<br />

0.5<br />

-0.5<br />

-1


Text


~10%


2000<br />

~10%


2000<br />

~10%


2000<br />

~10%


No. ]


Intrinsic shape of a<br />

background galaxy (ε~0.3)<br />

Simulated lensing map<br />

Gravitational lensing!<br />

Galaxy shape actually seen<br />

after GL: ε obs ~ε+γ GL<br />

! The distortion signal of interest is tiny: γ GL ~0.01-0.1<br />

! Indeed this coherent signal is statistically measurable <br />

need ~10 galaxies per point


Sarah Bridle


cosmic shear<br />

• 2lensing power<br />

γ(θ) ∝ Ω m0<br />

zS<br />

0<br />

dz L<br />

d LS (z L ,z S )d L (z L )<br />

d S (z S )<br />

δ(z L , θ)<br />

• <br />

• power spectrum, bispectrum etc<br />

• <br />

<br />

~1%<br />

10 8


state of the art<br />

CFHT (4m)<br />

ξ γ (θ) =γ(φ)γ ∗ (φ + θ) F.T.<br />

−→ C γ (l)


photometric redshift


Baryon Acoustic<br />

Oscillation


BAO


BAO


BAO


BAO<br />

5


BAO<br />

• <br />

(148±3 Mpc)<br />

5


BAO<br />

• <br />

(148±3 Mpc)<br />

<br />

5


BAO<br />

• <br />

(148±3 Mpc)<br />

<br />

• <br />

5


BAO<br />

• <br />

(148±3 Mpc)<br />

<br />

• <br />

• <br />

<br />

5


BAO<br />

• <br />

(148±3 Mpc)<br />

<br />

• <br />

• <br />

<br />

• <br />

5


BAO<br />

• <br />

(148±3 Mpc)<br />

<br />

• <br />

• <br />

<br />

5<br />

• <br />


BAO<br />

• <br />

(148±3 Mpc)<br />

<br />

• <br />

• <br />

<br />

5<br />

• <br />

• <br />


sound horizon<br />

http://astro.berkeley.edu/~mwhite/bao/


sound horizon<br />

http://astro.berkeley.edu/~mwhite/bao/


sound horizon<br />

http://astro.berkeley.edu/~mwhite/bao/


sound horizon<br />

http://astro.berkeley.edu/~mwhite/bao/


sound horizon<br />

http://astro.berkeley.edu/~mwhite/bao/


sound horizon<br />

http://astro.berkeley.edu/~mwhite/bao/


sound horizon<br />

http://astro.berkeley.edu/~mwhite/bao/


sound horizon<br />

http://astro.berkeley.edu/~mwhite/bao/


A. Reid et al.<br />

SDSS DR7


A. Reid et al.<br />

SDSS DR7<br />

Figure 2. Average likelihood contours recovered from the analysis of three<br />

power spectra (top panel) and six power spectra (bottom panel) measured<br />

from 1000 Log-Normal density fields. Contours are plotted for −2lnL =<br />

2.3, 6.0, 9.2,correspondingtotwo-parameterconfidenceof68%,95%and<br />

99% for a Gaussian distribution. Contours were calculated after increasing<br />

the errors on the power spectrum band-powers as described inthetext.<br />

Solid circles mark the locations of the likelihood maxima closest to the<br />

true cosmology. We have plotted the likelihood surface as a function of<br />

D V (z)/Mpc, forfixedr s (z d )=154.7Mpc,toshowdistanceerrorsif<br />

the comoving sound horizon is known perfectly. The values of D V for our<br />

input cosmology are shown by the vertical and horizontal solid lines.


the<br />

als<br />

the<br />

one<br />

the<br />

con<br />

0.0<br />

low<br />

(as<br />

eff<br />

BAO<br />

<br />

SDSS DR7<br />

~1M galaxies<br />

is (<br />

0.6<br />

a 2<br />

ban<br />

add<br />

bet<br />

tain<br />

Ω m<br />

(Ω<br />

WM<br />

the<br />

sin<br />

on<br />

ram<br />

tio<br />

pan<br />

Wi<br />

and<br />

sio<br />

the<br />

ma<br />

to<br />

spe<br />

the<br />

ˆP h<br />

tex<br />

im


• <br />

• <br />

• <br />

• <br />

• systematics<br />

(DETF)


SuMIRe<br />

• <br />

<br />

• 93<br />

• <br />

<br />

()<br />

• 3000<br />

<br />


SuMIRe<br />

• <br />

<br />

• 93<br />

• <br />

<br />

()<br />

• 3000<br />

<br />

• <br />

<br />

HSC


SuMIRe<br />

• <br />

<br />

• 93<br />

• <br />

<br />

()<br />

• 3000<br />

<br />

• <br />

<br />

HSC<br />

<br />

PFS


Lens Barrel to complete Feb. 2011.<br />

The HSC unit to complete Apr. 2011.<br />

The unit to arrive at Subaru June 2011.<br />

First light : October 2011.


Lens Barrel to complete Feb. 2011.<br />

The HSC unit to complete Apr. 2011.<br />

The unit to arrive at Subaru June 2011.<br />

First light : October 2011.


HSC<br />

≈300M galaxies


HSC


PFS<br />

• 2000−3000<br />

<br />

• HSC<br />

<br />

• fiber positioner<br />

<br />

• <br />

• ≈3M galaxies



• <br />


• <br />

• <br />


• <br />

• <br />

• <br />

<br />

• 8


• <br />

• <br />

• <br />

<br />

• 8<br />


• <br />

• <br />

• <br />

<br />

• 8<br />

• <br />

<br />

<br />

SuMIRe=Subaru Measurement of Images and Redshifts


(g/cm 2 )<br />

4<br />

3<br />

2<br />

1<br />

–8<br />

<br />

0<br />

8<br />

<br />

–8 0<br />

8<br />

<br />

2<br />

3


137<br />

100<br />

70<br />

85<br />

3<br />

<br />

<br />

1.8 <br />

COSMOS Survey


@IPMU<br />

34<br />

22<br />

Big<br />

Bang!<br />

60<br />

137


@IPMU<br />

34<br />

22<br />

Big<br />

Bang!<br />

60<br />

: 2000 <br />

<br />

<br />

<br />

137


@IPMU<br />

<br />

60<br />

34<br />

22<br />

Big<br />

Bang!<br />

: 2000 <br />

<br />

<br />

<br />

137


@IPMU<br />

<br />

60<br />

34<br />

22<br />

Big<br />

Bang!<br />

: 2000 <br />

<br />

<br />

<br />

137<br />

<br />

!


@IPMU<br />

<br />

60<br />

34<br />

22<br />

Big<br />

Bang!<br />

: 2000 <br />

<br />

<br />

<br />

137<br />

<br />

!


@IPMU<br />

<br />

60<br />

34<br />

22<br />

Big<br />

Bang!<br />

: 2000 <br />

<br />

<br />

<br />

137<br />

<br />

!<br />

<br />

3


@IPMU<br />

<br />

60<br />

34<br />

22<br />

Big<br />

Bang!<br />

: 2000 <br />

<br />

<br />

<br />

137<br />

<br />

!<br />

<br />

3<br />

<br />

<br />

<br />

(8.2m)


ACT<br />

<br />

2008 2009<br />

2010<br />

@IPMU<br />

Δw~10%<br />

Pan-<br />

Starrs<br />

<br />

<br />

BOSS<br />

<br />

<br />

<br />

DES<br />

2011<br />

<br />

<br />

2011<br />

<br />

2013<br />

<br />

(σ(w pivot )σ(w a )) −1


ACT<br />

<br />

2008 2009<br />

2010<br />

@IPMU<br />

Δw~10%<br />

Pan-<br />

Starrs<br />

<br />

<br />

BOSS<br />

<br />

<br />

<br />

DES<br />

2011<br />

<br />

<br />

2011<br />

<br />

2013<br />

<br />

(σ(w pivot )σ(w a )) −1


ACT<br />

<br />

2008 2009<br />

2010<br />

@IPMU<br />

Δw~10%<br />

Pan-<br />

Starrs<br />

<br />

<br />

BOSS<br />

<br />

<br />

<br />

DES<br />

2011<br />

<br />

<br />

2011<br />

<br />

2013<br />

<br />

(σ(w pivot )σ(w a )) −1


Δw~3%<br />

<br />

<br />

ACT<br />

<br />

2008 2009<br />

2010<br />

@IPMU<br />

Δw~10%<br />

Pan-<br />

Starrs<br />

<br />

<br />

BOSS<br />

<br />

<br />

<br />

DES<br />

2011<br />

<br />

<br />

2011<br />

<br />

2013<br />

<br />

(σ(w pivot )σ(w a )) −1


Δw~3%<br />

<br />

<br />

ACT<br />

<br />

2008 2009<br />

2010<br />

@IPMU<br />

Δw~10%<br />

Pan-<br />

Starrs<br />

<br />

<br />

BOSS<br />

<br />

<br />

DES<br />

2011<br />

<br />

<br />

<br />

2011<br />

LSST, JDEM, Euclid~x10<br />

<br />

2013<br />

<br />

(σ(w pivot )σ(w a )) −1


• 30


• 30<br />

• 95


• 30<br />

• 95<br />


• 30<br />

• 95<br />


• 30<br />

• 95<br />

• <br />


• 30<br />

• 95<br />

• <br />

• <br />

• 27


• 30<br />

• 95<br />

• <br />

• <br />

• 27<br />


• optical frequency combredshift<br />

1cm/sec<br />

• 10<br />

c t H0≈15 cm/sec<br />

<br />

• TMT

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!