25.10.2014 Views

3D Simulation of the Thermal Response Test in a U ... - COMSOL.com

3D Simulation of the Thermal Response Test in a U ... - COMSOL.com

3D Simulation of the Thermal Response Test in a U ... - COMSOL.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Presented at <strong>the</strong> <strong>COMSOL</strong> Conference 2009 Milan


Target<br />

• Commonly used <strong>in</strong> GEOTHERMAL<br />

applications to restore <strong>the</strong> equivalent values<br />

<strong>of</strong> both <strong>the</strong> soil <strong>the</strong>rmal conductivity (λ eq ) and<br />

<strong>the</strong> borehole <strong>the</strong>rmal resistance (Rb eq ).<br />

• The estimation procedure is based on <strong>the</strong><br />

<strong>com</strong>parison <strong>of</strong> experimental TRT data with<br />

<strong>the</strong> solution <strong>of</strong> <strong>the</strong> equations describ<strong>in</strong>g <strong>the</strong><br />

model’s behaviour (i.e. L<strong>in</strong>e Source Model,<br />

Cyl<strong>in</strong>der Source Model).<br />

To discuss <strong>the</strong> capability <strong>of</strong> <strong>the</strong> <strong>Thermal</strong> <strong>Response</strong> <strong>Test</strong> based on <strong>the</strong><br />

L<strong>in</strong>e Source Model with regards to <strong>the</strong> characterization <strong>of</strong> borehole<br />

energy storage systems <strong>in</strong> real conditions <strong>of</strong> non-l<strong>in</strong>ear and nonuniform<br />

heat source.<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 2


<strong>3D</strong> transient conduction heat<br />

transfer problem with<strong>in</strong> <strong>the</strong> soil,<br />

<strong>the</strong> borehole fill<strong>in</strong>g material<br />

and <strong>the</strong> HDPE tubes is coupled<br />

with <strong>the</strong> 1D convective<br />

problem with<strong>in</strong> <strong>the</strong> carrier fluid<br />

Geo<strong>the</strong>rmal Energy Storage System’s Geometry<br />

41080 prism mesh<strong>in</strong>g<br />

elements<br />

a) Radial mesh<strong>in</strong>g; b) Axial mesh<strong>in</strong>g<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 3


T<br />

T<br />

t<br />

c p<br />

r, z,0<br />

T0<br />

T<br />

r<br />

r<br />

r<br />

t<br />

div<br />

h<br />

o<br />

T<br />

T<br />

fluid<br />

Initial condition<br />

z,<br />

t<br />

T<br />

r , z,<br />

t<br />

t<br />

Boundary condition<br />

Transient tri-dimensional heat transfer<br />

conduction governed by <strong>the</strong> Fourier<br />

equation is solved <strong>in</strong> <strong>the</strong> doma<strong>in</strong> <strong>of</strong> <strong>the</strong><br />

soil, <strong>the</strong> fill<strong>in</strong>g material and <strong>the</strong> HDPE<br />

tubes.<br />

By assum<strong>in</strong>g that <strong>the</strong> convection problem <strong>in</strong> both <strong>the</strong> tubes <strong>of</strong> <strong>the</strong> heat exchanger is<br />

one-dimensional<br />

A<br />

T i<br />

Ti<br />

Ti<br />

f<br />

c<br />

pf<br />

u ho<br />

T rt<br />

, z,<br />

t Ti<br />

z,<br />

t<br />

t z<br />

z, 0 T<br />

0<br />

Initial condition<br />

Energy equation for <strong>the</strong> right-tube<br />

downward fluid flow<br />

A<br />

T f<br />

T<br />

f<br />

T<br />

f<br />

f<br />

c<br />

pf<br />

u ho<br />

T rt<br />

, z,<br />

t T<br />

f<br />

z,<br />

t<br />

t z<br />

z, 0 T<br />

0<br />

Initial condition<br />

Energy equation for <strong>the</strong> left-tube<br />

upward fluid flow<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 4


The U-connection at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> pipe between <strong>the</strong> downward and<br />

upward fluid is here modelled by impos<strong>in</strong>g for z=H that <strong>the</strong> mean<br />

temperature <strong>of</strong> <strong>the</strong> upward fluid equals <strong>the</strong> mean temperature <strong>of</strong> <strong>the</strong><br />

downward fluid:<br />

Ti H , t T<br />

f<br />

H,<br />

t<br />

The condition <strong>of</strong> constant power supplied to <strong>the</strong> work<strong>in</strong>g fluid is implemented<br />

by <strong>the</strong> periodic edge condition:<br />

Ti 0, t Tf<br />

0,<br />

t<br />

T<br />

with T constant over <strong>the</strong> whole temporal doma<strong>in</strong>.<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 5


Ma<strong>in</strong> <strong>in</strong>put data for <strong>the</strong> tested cases<br />

Work<strong>in</strong>g Fluid Mass Flowrate<br />

0.1 kg/s<br />

Fluid density 1000 kg/m 3<br />

Fluid specific heat 4186 J/(kg K)<br />

Inlet-Oulet Fluid temperature difference 3.6 K<br />

Convective Coefficient (Dittus-Boelter) 1960 W/(m 2 K)<br />

Soil density 1000 kg/m 3<br />

Soil specific heat 2000 J/(kg K)<br />

CASE A:<br />

Soil <strong>the</strong>rmal conductivity<br />

2 W/(m K)<br />

CASE B:<br />

3 W/(m K)<br />

Fill density 1000 kg/m 3<br />

Fill specific heat 1000 J/(kg K)<br />

Fill <strong>the</strong>rmal conductivity 0.9 W/(m K)<br />

HDPE density 950 kg/m 3<br />

HDPE specific heat 1900 J/(kg K)<br />

HDPE <strong>the</strong>rmal conductivity 0.48 W/(m K)<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 6


LINE SOURCE MODEL:<br />

Tf(t) =m+ k*ln(t)<br />

where:<br />

m= T0+ Q/(4 πλH) *(ln(4 α/rb2) -γ) + RbQ/H<br />

k= Q/(4 πλH)<br />

Temporal borehole temperature distribution at z=0<br />

Average fluid temperature versus time for case A<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 7


Estimated <strong>the</strong>rmal conductivity for case A<br />

Estimated <strong>the</strong>rmal conductivity for case B<br />

The L<strong>in</strong>e Source Model satisfactory predicts <strong>the</strong> <strong>the</strong>rmal<br />

conductivity <strong>of</strong> <strong>the</strong> soil, by restor<strong>in</strong>g <strong>the</strong> parameter proper<br />

value already <strong>in</strong> <strong>the</strong> first 30 hours.<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 8


Estimated borehole <strong>the</strong>rmal resistance<br />

• The two cases differ each o<strong>the</strong>r only for 1,5% for a variation <strong>of</strong><br />

50% <strong>of</strong> <strong>the</strong> soil <strong>the</strong>rmal conductivity.<br />

• They differ from <strong>the</strong> value numerically calculated <strong>in</strong> steady<br />

state regime for less than 5% (R b =0.1625).<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 9


• The L<strong>in</strong>e Source Model applied to <strong>the</strong> <strong>Thermal</strong><br />

<strong>Response</strong> <strong>Test</strong> represents a sufficiently<br />

accurate approach also <strong>in</strong> <strong>the</strong> U-tube<br />

configuration.<br />

• The <strong>3D</strong> approach appears necessary when<br />

o<strong>the</strong>r more <strong>com</strong>plex geometric configurations,<br />

or o<strong>the</strong>r phenomena have to be considered.<br />

L<strong>in</strong>da Schiavi – Comsol Conference 2009 10

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!