27.10.2014 Views

Pollen and Stigma Structure and Function: The Role of Diversity in ...

Pollen and Stigma Structure and Function: The Role of Diversity in ...

Pollen and Stigma Structure and Function: The Role of Diversity in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

S86<br />

<strong>The</strong> Plant Cell<br />

Table 1. <strong>Pollen</strong> <strong>and</strong> <strong>Stigma</strong> Structural Features <strong>and</strong> <strong>The</strong>ir <strong>Role</strong>s<br />

Structural Feature<br />

<strong>Pollen</strong> gra<strong>in</strong> size<br />

Number <strong>of</strong> pollen<br />

gra<strong>in</strong>s per poll<strong>in</strong>ation<br />

unit<br />

<strong>Pollen</strong> coat<br />

Ex<strong>in</strong>e pattern<br />

Ex<strong>in</strong>e porosity<br />

Aperture size,<br />

number, <strong>and</strong><br />

complexity<br />

Int<strong>in</strong>e<br />

<strong>Stigma</strong> coat<br />

Proposed <strong>Function</strong>al Significance<br />

Biotic <strong>and</strong> abiotic poll<strong>in</strong>ator<br />

preference <strong>and</strong> fluid dynamics<br />

May <strong>in</strong>crease delivery efficiency<br />

Protects pollen cells from excess<br />

desiccation after dehiscence;<br />

protects from UV radiation <strong>and</strong><br />

pathogen attack; stick<strong>in</strong>ess,<br />

color, <strong>and</strong> aroma may affect<br />

<strong>in</strong>teraction with poll<strong>in</strong>ation vectors;<br />

prote<strong>in</strong> components <strong>in</strong>volved <strong>in</strong><br />

adhesion, signal<strong>in</strong>g, <strong>and</strong><br />

compatibility; lipids <strong>and</strong> prote<strong>in</strong>s<br />

are necessary for hydration<br />

Interacts with biotic <strong>and</strong> abiotic<br />

poll<strong>in</strong>ation vectors; affects<br />

the surface area <strong>of</strong> the stigma<br />

<strong>in</strong>terface; mediates stigma adhesion;<br />

reta<strong>in</strong>s pollen coat; affects wall<br />

strength <strong>and</strong> elasticity<br />

Microchannels are sites <strong>of</strong> water<br />

egress <strong>and</strong> <strong>in</strong>gress dur<strong>in</strong>g<br />

desiccation <strong>and</strong> hydration;<br />

progressive desiccation limits<br />

pollen viability <strong>and</strong> life expectancy<br />

Affect environmental vulnerability to<br />

desiccation, fungal <strong>in</strong>vasion, <strong>and</strong><br />

mechanical stress; accelerated<br />

desiccation limits pollen viability<br />

<strong>and</strong> life expectancy; sites <strong>of</strong> focused<br />

water <strong>in</strong>gress dur<strong>in</strong>g hydration;<br />

allow extreme volume changes<br />

accompany<strong>in</strong>g desiccation <strong>and</strong><br />

hydration; serve as portals for<br />

pollen tube exit dur<strong>in</strong>g germ<strong>in</strong>ation<br />

Thickness <strong>and</strong> complexity are <strong>in</strong>versely<br />

coord<strong>in</strong>ated with ex<strong>in</strong>e <strong>and</strong> pollen coat<br />

characteristics; specialized layers <strong>and</strong><br />

<strong>in</strong>clusions at apertures are <strong>in</strong>volved <strong>in</strong><br />

pollen tube emergence <strong>and</strong> <strong>in</strong>vasion<br />

<strong>of</strong> the stigma cell wall<br />

Def<strong>in</strong>es stigmas as uniquely<br />

water-permeant sites on the plant;<br />

prote<strong>in</strong>s <strong>and</strong> lipids are <strong>in</strong>volved <strong>in</strong><br />

adhesion, hydration, <strong>and</strong> germ<strong>in</strong>ation;<br />

dry stigmas are pollen compatibility<br />

sites, with selective support <strong>of</strong> pollen<br />

hydration <strong>and</strong> germ<strong>in</strong>ation, whereas wet<br />

stigmas <strong>of</strong>ten are covered <strong>in</strong> exudates<br />

from apoptotic cells <strong>and</strong> block<br />

<strong>in</strong>appropriate poll<strong>in</strong>ation only <strong>in</strong> later<br />

steps; at the po<strong>in</strong>t <strong>of</strong> contact between<br />

pollen <strong>and</strong> stigma, the two coat<strong>in</strong>gs may<br />

mix, a process that mediates coat<br />

conversion, hydration, germ<strong>in</strong>ation, <strong>and</strong><br />

stigma <strong>in</strong>vasion<br />

covered with surface cells that <strong>of</strong>ten lyse to release a viscous<br />

surface secretion conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s, lipids, polysaccharides,<br />

<strong>and</strong> pigments; <strong>and</strong> dry stigmas, which have <strong>in</strong>tact surface cells<br />

that typically protrude as papillae <strong>and</strong> are covered by a primary<br />

cell wall, a waxy cuticle, <strong>and</strong> a prote<strong>in</strong>aceous pellicle (Figure 1B).<br />

<strong>Stigma</strong>s have been studied extensively <strong>in</strong> plants that exhibit<br />

self-<strong>in</strong>compatibility, a process that restricts <strong>in</strong>breed<strong>in</strong>g. Self<strong>in</strong>compatible<br />

stigmas reject self-pollen by <strong>in</strong>hibit<strong>in</strong>g pollen<br />

hydration, germ<strong>in</strong>ation, <strong>and</strong> tube <strong>in</strong>vasion; these processes have<br />

been reviewed recently (Nasrallah, 2000; Silva <strong>and</strong> Gor<strong>in</strong>g, 2001;<br />

Wheeler et al., 2001; Hiscock <strong>and</strong> McInnis, 2003; Kao <strong>and</strong><br />

Tsukamoto, 2004).<br />

<strong>Pollen</strong> Adhesion to the <strong>Stigma</strong>: First Contact<br />

To capture pollen gra<strong>in</strong>s, stigmas engage biotic <strong>and</strong> abiotic<br />

poll<strong>in</strong>ators (such as <strong>in</strong>sects <strong>and</strong> w<strong>in</strong>d) <strong>and</strong> use rapid <strong>and</strong> strong<br />

adhesive <strong>in</strong>teractions to reta<strong>in</strong> pollen gra<strong>in</strong>s. <strong>The</strong> pollen–stigma<br />

<strong>in</strong>terface can differ from species to species as a result <strong>of</strong> the wide<br />

variability <strong>in</strong> the morphology <strong>and</strong> content <strong>of</strong> stigma exudates,<br />

ex<strong>in</strong>e layers, <strong>and</strong> pollen coats. Several different methods have<br />

been devised to <strong>in</strong>vestigate <strong>and</strong> measure pollen–stigma adhesion<br />

(Stead et al., 1979; Luu et al., 1997a, 1997b; Z<strong>in</strong>kl et al.,<br />

1999), <strong>in</strong>clud<strong>in</strong>g chemical <strong>and</strong> detergent washes <strong>and</strong> centrifugation-based<br />

adhesion assays. Here, we focus on the characterization<br />

<strong>of</strong> pollen adhesion on the dry stigmas <strong>of</strong> the<br />

Brassicaceae, particularly Arabidopsis thaliana <strong>and</strong> Brassica<br />

oleracea. In both cases, stigmas adhere poorly to pollen gra<strong>in</strong>s<br />

from other botanical families, demonstrat<strong>in</strong>g a specificity that<br />

restricts <strong>in</strong>appropriate pollen access (Luu et al., 1998; Z<strong>in</strong>kl et al.,<br />

1999). Adhesion dur<strong>in</strong>g downstream stages (such as between<br />

pollen tubes <strong>and</strong> the style) has been reviewed recently (Lord <strong>and</strong><br />

Russell, 2002; Lord, 2003).<br />

In Arabidopsis, the nature <strong>of</strong> the pollen–stigma <strong>in</strong>terface has<br />

been shown to change as poll<strong>in</strong>ation progresses, becom<strong>in</strong>g<br />

considerably stronger over time, with different types <strong>of</strong> adhesive<br />

contacts supplement<strong>in</strong>g <strong>and</strong> supplant<strong>in</strong>g each other (Luu et al.,<br />

1997a, 1997b; Z<strong>in</strong>kl et al., 1999). Z<strong>in</strong>kl et al. (1999) measured<br />

a very rapid ‘‘<strong>in</strong>itial’’ adhesion step <strong>in</strong> Arabidopsis that relies on<br />

the pollen ex<strong>in</strong>e but not on the pollen coat. This <strong>in</strong>itial adhesion is<br />

not likely to be based on prote<strong>in</strong>–prote<strong>in</strong> <strong>in</strong>teractions, because<br />

purified ex<strong>in</strong>e fragments reta<strong>in</strong>ed their b<strong>in</strong>d<strong>in</strong>g capacity even<br />

when washed with a range <strong>of</strong> compounds, <strong>in</strong>clud<strong>in</strong>g organic<br />

solvents, salts, <strong>and</strong> reduc<strong>in</strong>g <strong>and</strong> oxidiz<strong>in</strong>g agents. Thus, pollen<br />

capture <strong>in</strong> Arabidopsis most likely depends on biophysical <strong>and</strong>/<br />

or chemical <strong>in</strong>teractions between the stigma surface <strong>and</strong> the<br />

polymers <strong>of</strong> the pollen ex<strong>in</strong>e; the nature <strong>of</strong> these contacts<br />

rema<strong>in</strong>s unknown. Identification <strong>of</strong> these selective adhesives<br />

requires further analysis <strong>of</strong> ex<strong>in</strong>e structure <strong>and</strong> characterization<br />

<strong>of</strong> stigma pellicle components. Given the challenge <strong>of</strong> purify<strong>in</strong>g<br />

large quantities <strong>of</strong> these chemically complex materials, genetic<br />

dissection <strong>of</strong> the pathways required for their synthesis may prove<br />

most worthwhile.<br />

After ex<strong>in</strong>e-mediated adhesion, mobilization <strong>of</strong> the pollen<br />

coat occurs, lead<strong>in</strong>g to mix<strong>in</strong>g <strong>of</strong> lipids <strong>and</strong> prote<strong>in</strong>s to form<br />

a ‘‘foot’’ <strong>of</strong> contact on the stigma surface (Figures 1C <strong>and</strong><br />

1D). <strong>The</strong>re is now extensive evidence that the prote<strong>in</strong>s <strong>and</strong><br />

lipids <strong>in</strong> the pollen coat, <strong>and</strong> prote<strong>in</strong>s on the stigma surface,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!