27.10.2014 Views

Pollen and Stigma Structure and Function: The Role of Diversity in ...

Pollen and Stigma Structure and Function: The Role of Diversity in ...

Pollen and Stigma Structure and Function: The Role of Diversity in ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

S90<br />

<strong>The</strong> Plant Cell<br />

Figure 2. Examples <strong>of</strong> Angiosperm <strong>Diversity</strong> <strong>in</strong> <strong>Pollen</strong> <strong>and</strong> <strong>Stigma</strong> <strong>Structure</strong>s.<br />

(A) Hydrated Lilium longiflorum pollen gra<strong>in</strong> sta<strong>in</strong>ed with Congo red. <strong>The</strong> <strong>in</strong>t<strong>in</strong>e (red sta<strong>in</strong><strong>in</strong>g) conta<strong>in</strong>s several fissures at the s<strong>in</strong>gle large aperture; the<br />

pollen coat<strong>in</strong>g (green) forms droplets on the surfaces <strong>of</strong> the ornamented ex<strong>in</strong>e walls.<br />

(B) Multiapertured pollen <strong>of</strong> Passiflora fangu<strong>in</strong>olenta, hydrated <strong>and</strong> sta<strong>in</strong>ed with ex<strong>in</strong>e-specific Auram<strong>in</strong>e O dye.<br />

(C) Polyad pollen <strong>of</strong> Acacia ret<strong>in</strong>oides, sta<strong>in</strong>ed with Auram<strong>in</strong>e O. Thirteen small, <strong>in</strong>terconnected pollen gra<strong>in</strong>s are visible.<br />

(D) Composite scann<strong>in</strong>g electron micrographs <strong>of</strong> several pollen types, <strong>in</strong>clud<strong>in</strong>g Arabidopsis, Ambrosia (ragweed), maize, Plumbago, <strong>and</strong> Artemisia<br />

douglasiana (mugwort), which vary <strong>in</strong> size, ex<strong>in</strong>e ornamentation, <strong>and</strong> number <strong>and</strong> arrangement <strong>of</strong> apertures.<br />

(E) A portion <strong>of</strong> the stigma <strong>of</strong> Torenia fournieri, visualized with Auram<strong>in</strong>e O.<br />

(F) <strong>Stigma</strong> papillae from Arabidopsis visualized by FM1-43.<br />

Bars ¼ 10 mm <strong>in</strong>(A) to (D) <strong>and</strong> 200 mm <strong>in</strong>(E) <strong>and</strong> (F).<br />

chromosome segregation dur<strong>in</strong>g meiosis (Copenhaver et al.,<br />

2000; Copenhaver, 2003). Other Arabidopsis mutations have<br />

a more severe fusion defect. <strong>Pollen</strong> from tetraspore/stud (tes/<br />

stud) mutants fail to undergo cytok<strong>in</strong>esis, result<strong>in</strong>g <strong>in</strong> the release<br />

<strong>of</strong> a giant pollen gra<strong>in</strong> that conta<strong>in</strong>s four vegetative nuclei <strong>and</strong> up<br />

to eight sperm (Hulskamp et al., 1997; Spielman et al., 1997;<br />

Yang et al., 2003). Although these mutations have led to<br />

<strong>in</strong>terest<strong>in</strong>g <strong>in</strong>sights, there are likely additional genes to be found;<br />

screens for tes or quartet phenotypes were not performed to<br />

saturation. Such genes would serve as appeal<strong>in</strong>g c<strong>and</strong>idates for<br />

comparative pollen development studies across taxa.<br />

Pattern<strong>in</strong>g events that affect ex<strong>in</strong>e sculpt<strong>in</strong>g <strong>and</strong> aperture<br />

position also occur dur<strong>in</strong>g or soon after meiosis. Haploid pollen<br />

typically produces a primex<strong>in</strong>e, establish<strong>in</strong>g an early pattern.<br />

After callose wall degradation, diploid tapetal cells elaborate this<br />

pattern with their deposition <strong>of</strong> sporopollen<strong>in</strong> material (Paxson-<br />

Sowders et al., 1997). Temporally regulated construction <strong>and</strong><br />

degradation <strong>of</strong> the callose wall that surrounds pollen occurs <strong>in</strong><br />

angiosperms (Heslop-Harrison, 1971; Munoz et al., 1995) <strong>and</strong><br />

resembles the patterns <strong>of</strong> spore wall development <strong>in</strong> ferns <strong>and</strong><br />

bryophytes (Pettitt <strong>and</strong> Jermy, 1974). <strong>The</strong> <strong>in</strong>itial species-specific<br />

pattern <strong>of</strong> the primex<strong>in</strong>e requires coord<strong>in</strong>ation between the<br />

pollen plasma membrane <strong>and</strong> its underly<strong>in</strong>g cytoskeleton,<br />

vesicles, <strong>and</strong> endoplasmic reticulum (Dick<strong>in</strong>son <strong>and</strong> Sheldon,<br />

1986; Takahashi <strong>and</strong> Skvarla, 1991; Fitzgerald <strong>and</strong> Knox, 1995;<br />

Perez-Munoz et al., 1995; Paxson-Sowders et al., 2001). For<br />

example, the Arabidopsis DEFECTIVE IN EXINE1 gene product,<br />

a predicted membrane-associated prote<strong>in</strong> with limited similarity<br />

to animal <strong>in</strong>tegr<strong>in</strong>s, appears to <strong>in</strong>teract with the plasma<br />

membrane to nucleate sporopollen<strong>in</strong> deposition (Paxson-Sowders<br />

et al., 2001). An ex<strong>in</strong>e pattern mutant also has been<br />

described <strong>in</strong> Haplopappus gracilis, whose normal surface<br />

pattern <strong>of</strong> densely packed sp<strong>in</strong>es is reduced to a r<strong>and</strong>om scatter<br />

<strong>of</strong> sporopollen<strong>in</strong> deposits with few <strong>in</strong>terspersed sp<strong>in</strong>es (Jackson<br />

et al., 2000). Similarly, mutation <strong>in</strong> the Arabidopsis less adherent<br />

pollen1 gene yields mutant pollen gra<strong>in</strong>s with discont<strong>in</strong>uous<br />

ex<strong>in</strong>e walls composed only <strong>of</strong> globular sporopollen<strong>in</strong> deposits<br />

(Z<strong>in</strong>kl <strong>and</strong> Preuss, 2000). With the identification <strong>of</strong> additional<br />

mutants <strong>in</strong>volved <strong>in</strong> ex<strong>in</strong>e development, it will become possible<br />

to dist<strong>in</strong>guish those genes required for sporopollen<strong>in</strong> synthesis<br />

from those required to establish patterns. Pattern<strong>in</strong>g genes, <strong>in</strong><br />

particular, may be highly variable across species, either <strong>in</strong> their<br />

cod<strong>in</strong>g sequence or <strong>in</strong> their site <strong>and</strong> tim<strong>in</strong>g <strong>of</strong> expression.<br />

Because these genes are likely altered through evolution, ex<strong>in</strong>e<br />

patterns discovered by mutation <strong>and</strong> considered aberrant <strong>in</strong> one<br />

species may be normal <strong>in</strong> another species.<br />

Ex<strong>in</strong>e also varies <strong>in</strong> the number, distribution, <strong>and</strong> architecture<br />

<strong>of</strong> the apertures that <strong>in</strong>terrupt it (Figure 2). Apertures are diverse<br />

across taxa, with<strong>in</strong> families, with<strong>in</strong> species, <strong>and</strong> even with<strong>in</strong><br />

a s<strong>in</strong>gle plant (Mignot et al., 1994). <strong>Pollen</strong> from monocots<br />

characteristically has a s<strong>in</strong>gle aperture, a trait considered to be<br />

ancestral. Most dicot pollen gra<strong>in</strong>s have three apertures,<br />

although <strong>in</strong> both <strong>in</strong>stances, aperture numbers have <strong>in</strong>creased<br />

or decreased repeatedly <strong>and</strong> <strong>in</strong>dependently dur<strong>in</strong>g the course <strong>of</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!