28.10.2014 Views

Manual for Designing Surface Application of OSSF W/W Effluent

Manual for Designing Surface Application of OSSF W/W Effluent

Manual for Designing Surface Application of OSSF W/W Effluent

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Manual</strong> <strong>for</strong> <strong>Designing</strong> <strong>Surface</strong><br />

<strong>Application</strong> <strong>of</strong> <strong>OSSF</strong> W/W <strong>Effluent</strong><br />

by<br />

Clif<strong>for</strong>d B. Fedler<br />

Texas Tech University<br />

March 5, 2008<br />

clif<strong>for</strong>d.fedler@ttu.edu


<strong>Surface</strong> treatment <strong>of</strong> wastewater is<br />

accomplished through the controlled<br />

application i onto a land surface such that a<br />

designed degree <strong>of</strong> treatment through natural<br />

physical, chemical, and dbiological i lprocesses<br />

occurs in the plant-soil-water matrix.


Basic System<br />

Sprayfield<br />

Wastewater<br />

Aerobic<br />

Treatment or<br />

Septic Tank<br />

Plant root zone


<strong>Surface</strong> <strong>Application</strong> System<br />

Wastewater Applied<br />

Grass<br />

Crop Root Zone<br />

Leachate Water


<strong>Surface</strong> <strong>Application</strong> System<br />

Pi Principle il Design Parameters:<br />

Evapotranspiration/Evaporation<br />

Deep Percolation/Leaching<br />

Soil Properties<br />

water intake rate<br />

Crop Selection<br />

nutrient uptake/removal<br />

active growth period<br />

Wastewater <strong>Application</strong><br />

drip<br />

sprinkler<br />

Run<strong>of</strong>f Control<br />

Storage


Design Components<br />

Water, Nitrogen & Salt Balance<br />

Wastewater ppt ET<br />

No run<strong>of</strong>f allowed<br />

Grass<br />

Crop Root Zone<br />

Leaching


What affects the Water Balance?<br />

Wastewater application rate<br />

Evapotranspiration p (crop)<br />

Precipitation<br />

Soil water storage<br />

Leaching<br />

Run<strong>of</strong>f


The Soil-Water System<br />

Saturation<br />

Field<br />

Capacity<br />

Permanent<br />

Wilting Point<br />

Available<br />

Water<br />

Unavailable<br />

Water<br />

Gravitational<br />

Water<br />

Capillary<br />

Water<br />

Hygroscopic<br />

Water


Saturated<br />

Conditions<br />

Draining<br />

Conditions<br />

Field<br />

Capacity


Field<br />

Capacity<br />

Available<br />

Moisture<br />

Wilting<br />

Point


Field<br />

Capacity<br />

Readily<br />

Available<br />

Moisture<br />

Wilting<br />

Point


Main Design Components Required<br />

‣ Sprinkler Spacing<br />

‣ Operating Pressure<br />

‣ Selection <strong>of</strong> Sprinkler Heads<br />

‣ Pressure Losses in Main Pipeline<br />

‣ Risers<br />

‣ <strong>Application</strong> Rate<br />

‣ Soil Infiltration Rate<br />

‣ Time <strong>of</strong> <strong>Application</strong>


Typical sprinkler patterns


UCC<br />

UCC is Christiansen’s coefficient <strong>of</strong><br />

uni<strong>for</strong>mity. It is used to quantify<br />

the uni<strong>for</strong>mity <strong>of</strong> water application<br />

by sprinklers.


Water <strong>Application</strong> Efficiency<br />

Water application uni<strong>for</strong>mity under<br />

irrigation depends on uni<strong>for</strong>mity <strong>of</strong> the<br />

sprinklers and not on soil properties, so<br />

long as the application rate does not exceed<br />

the intake rate <strong>of</strong> the soil.


Water <strong>Application</strong> Efficiency<br />

E a = 100(d r /d a )<br />

d r = Average depth <strong>of</strong> irrigation water<br />

stored in the root zone.<br />

d a = Average depth or net application<br />

rate.


Irrigation Efficiency<br />

i<br />

E s = Avg Depth <strong>of</strong> Irr. Water Beneficially Used<br />

Average Depth Applied


Ea = 100% Es = 50% UCC = 75%


Ea = 90% Es = 90% UCC = 85%


Ea = 60% Es = 100% UCC = 95%


Irrigation Efficiency testing setup


Use the Square Block Design<br />

With head-to-head overlap<br />

vs.


Single Sprinkler Pattern<br />

h <strong>of</strong> Wa ater<br />

R elative e Dept<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-40 -32 -24 -16 -8 0 8 16 24 32 40<br />

Distance from Sprinkler Head, ft


Overlapping Sprinkler Pattern<br />

35<br />

Depth o f Water<br />

Relative<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-40 -32 -24 -16 -8 0 8 16 24 32 40<br />

Distance from Sprinkler Head, ft


Impact Sprinkler Type:<br />

Burgess 503, UCC=51%<br />

Single Sprinkler Distribution, ib i No Overlap<br />

160<br />

140<br />

120<br />

100<br />

Volume (mL)<br />

80<br />

60<br />

40<br />

20<br />

0<br />

S1<br />

S4<br />

S7<br />

Can Spacing - 4<br />

ft.<br />

1 2 3 4 5 6 7 8 9<br />

Can Spacing - 4 ft.


Impact Sprinkler Type: Burgess 503<br />

UCC: 84.68, 16x16 spacing<br />

Multiple Sprinkler Distribution, Head-to-Head<br />

Spacing<br />

300<br />

250<br />

200<br />

Volume (mL)<br />

150<br />

100<br />

50<br />

0<br />

S1<br />

S4<br />

S7<br />

Can Spacing - 4<br />

ft.<br />

1 2 3 4 5 6 7 8<br />

Can Spacing - 4 ft.


UCC <strong>of</strong> Sprinklers-<br />

Effect <strong>of</strong> Pressure<br />

Model<br />

Toro s700 N3<br />

Toro s700<br />

N4.5<br />

Toro s700 N3<br />

Toro s700<br />

N4.5<br />

Toro s700 N3<br />

Toro s700<br />

N4.5<br />

Type<br />

Impact<br />

Impact<br />

Impact<br />

Impact<br />

Impact<br />

Impact<br />

Pressure<br />

UCC (%)<br />

(psi)<br />

30 75.36<br />

30 50.90<br />

40 86.6767<br />

40 74.22<br />

50 90.40<br />

50 79.96


As = 1-Ys-a<br />

b<br />

minsion nless dep pth, Y=y y/y<br />

1.1<br />

1.0<br />

0.9<br />

Y min<br />

Y max<br />

b<br />

Di<br />

0<br />

Deficit<br />

Surplus a<br />

05 0.5<br />

Fraction <strong>of</strong> Area, X


Distribution <strong>of</strong> Nitrogen<br />

Nitro ogen, kg g/ha<br />

400.0<br />

300.00<br />

200.0<br />

100.00<br />

0.0<br />

0.<br />

0.<br />

0.<br />

0.<br />

0<br />

.2<br />

.4<br />

.6<br />

.8<br />

1<br />

Fraction <strong>of</strong> Area


Where does the nitrogen go?<br />

In a surface application system,<br />

nitrogen is largely consumed by crop<br />

Some nitrogen percolates below the<br />

root zone<br />

Some nitrogen is lost by<br />

denitrification


Denitrification<br />

2NO 2NO 2NO N O N<br />

2NO 3- ==> 2NO 2- ==> 2NO ==> N 2 O ==> N 2<br />

+5 +3 +2 +1 0


Denitrification ifi ti is dependent d on:<br />

‣ Moisture Content<br />

t<br />

‣ Temperature<br />

‣ Nitrogen concentration<br />

ti<br />

‣ Carbon concentration


Examples <strong>of</strong> Nitrogen Consumption<br />

Crops<br />

Pioneer Succession Vegetation<br />

Mixed Hardwoods<br />

Alfalfa<br />

Coastal Bermudagrass<br />

Kentucky Bluegrass<br />

Pasture<br />

Corn<br />

Annual Nitrogen Uptake (lb/ac)<br />

223<br />

178<br />

340<br />

479<br />

209<br />

68<br />

167


What makes a crop selectable?<br />

Bermuda Grass<br />

Has medium consumptive water use<br />

Hashighnitrogenrequirements<br />

requirements<br />

Does not fix nitrogen<br />

Has high tolerance <strong>for</strong> salts<br />

Cannot be maintained wet <strong>for</strong> long periods<br />

Can grow 12 months/year (some areas)<br />

Produces a saleable product


Accumulation <strong>of</strong> Salts<br />

• Upward movement <strong>of</strong> water<br />

– high evaporative demand in arid and semi arid<br />

regions<br />

– insufficient rainfall to leach salts<br />

• Poor drainage<br />

– salts must be leached from the root zone to<br />

prevent their accumulation


Salinity and Plant Growth<br />

• Salt stress increases the amount <strong>of</strong><br />

energy that a plant must spend to take<br />

water from the soil<br />

• This energy is not available <strong>for</strong> normal<br />

plant growth<br />

• This results in an overall reduction in<br />

plant growth


Wastewater<br />

Water<br />

Salt<br />

Nitrogen<br />

Water<br />

Nitrogen<br />

Water Salt Nitrogen<br />

Crop Root Zone<br />

Water<br />

Salt<br />

Nitrogen


Design Recommendations<br />

• The discharge rate between the sprinkler<br />

with the lowest rate and the sprinkler<br />

with the highest rate <strong>for</strong> a set should be<br />

less than 10%.<br />

• Design pressure should be mid-range <strong>of</strong><br />

specified pressure.


Design Recommendations<br />

• Sprinklers should be spaced head-tohead<br />

• The pressure difference between the<br />

sprinkler with the highest pressure and<br />

the sprinkler with the lowest pressure in<br />

a set should be less than 20%.


Design Recommendations<br />

• The layout in a block pattern <strong>for</strong> headto-head<br />

overlap or a seasonal uni<strong>for</strong>mity<br />

coefficient > 80%.<br />

• Gear head type sprinklers should be<br />

used and not spray head type sprinklers.


Design Recommendations<br />

• Risers <strong>of</strong> 6 inches should be used when<br />

the discharge rate is < 12 gpm and 12<br />

inches <strong>for</strong> discharge rates between 12<br />

and 26 gpm.<br />

• The application rate # the base water<br />

intake rate <strong>of</strong> the soil plus 0.1 inches <strong>for</strong><br />

interception.<br />

ti


Design Recommendations<br />

• The base soil infiltration rate should be<br />

set equal to the saturated hydraulic<br />

conductivity <strong>of</strong> the top 18 inches <strong>of</strong> soil.<br />

• A check-<strong>of</strong>f list <strong>of</strong> design considerations<br />

g<br />

should be developed and used on all<br />

new and renovated systems.


Design Recommendations<br />

• All designs should consider both a water<br />

• All designs should consider both a water<br />

balance and a nutrient balance.


<strong>OSSF</strong> <strong>Surface</strong> <strong>Application</strong> System<br />

Pi Principle il Design Parameters:<br />

Evapotranspiration/Evaporation<br />

Deep Percolation/Leaching<br />

Soil Properties<br />

water intake rate<br />

soil water storage<br />

Crop Selection<br />

nutrient uptake/removal<br />

active growth period<br />

Wastewater <strong>Application</strong><br />

Run<strong>of</strong>f Controlo<br />

Effect <strong>of</strong> PPCP’s and bacteria movement


Thank you <strong>for</strong> your attention<br />

One World

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!