28.11.2014 Views

flow equalization for controling flow through an ossf - Texas Onsite ...

flow equalization for controling flow through an ossf - Texas Onsite ...

flow equalization for controling flow through an ossf - Texas Onsite ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FLOW EQUALIZATION<br />

FOR CONTROLING FLOW<br />

THROUGH AN OSSF<br />

Bruce Lesikar<br />

<strong>Texas</strong> AgriLife Extension Service


What we will learn<br />

Defining wastewater <strong>flow</strong> from a facility<br />

Variability in <strong>flow</strong><br />

What is <strong>flow</strong> m<strong>an</strong>agement<br />

Evaluating <strong>flow</strong> <strong>for</strong> design<br />

Choosing the right size t<strong>an</strong>k<br />

M<strong>an</strong>aging <strong>flow</strong>s greater th<strong>an</strong> system<br />

capacity<br />

Flow <strong>equalization</strong> t<strong>an</strong>k components


Wastewater loading<br />

Two Q’sQ<br />

Wastewater qu<strong>an</strong>tity<br />

Hydraulic loading<br />

Residential 120-150<br />

150<br />

gallons per bedroom<br />

Wastewater quality<br />

Org<strong>an</strong>ic loading<br />

Residential < 300<br />

mg/L BOD 5<br />

Oxygen dem<strong>an</strong>d<br />

Residential <strong>an</strong>d<br />

commercial facilities


Residential Wastewater Usage<br />

<strong>Texas</strong> 30 TAC Chapter 285<br />

Type of Facility<br />

Usage Rate,<br />

Gallons/Day<br />

(without<br />

water saving<br />

devices)<br />

Usage Rate,<br />

Gallons/Day<br />

(with water<br />

saving<br />

devices)<br />

Single family dwelling (one or two bedrooms) - less th<strong>an</strong> 1,500 square<br />

feet.<br />

225 180<br />

Single family dwelling (three bedrooms) - less th<strong>an</strong> 2,500 square feet. 300 240<br />

Single family dwelling (four bedrooms) - less th<strong>an</strong> 3,500 square feet. 375 300<br />

Single family dwelling (five bedrooms) - less th<strong>an</strong> 4,500 square feet. 450 360<br />

Single family dwelling (six bedrooms) - less th<strong>an</strong> 5,500 square feet. 525 420<br />

Greater th<strong>an</strong> 5,500 square feet, each additional 1,500 square feet or<br />

increment thereof.<br />

75 60


Aerobic Treatment Unit Sizing<br />

<strong>for</strong> Residences<br />

Number of Bedrooms /Living area<br />

Minimum Aerobic<br />

Treatment Capacity<br />

(gal per day)<br />

Traditional sizing of<br />

Aerobic Treatment<br />

Capacity (gal per day)<br />

One or Two bedroom, less th<strong>an</strong> 1501 ft 2 400 450<br />

Three bedroom, less th<strong>an</strong> 2501 ft 2 400 600<br />

Four bedroom, less th<strong>an</strong> 3501 ft 2 480 750<br />

Five bedroom, less th<strong>an</strong> 4501 ft 2 600 900<br />

Six bedroom, less th<strong>an</strong> 5501 ft 2 720 1050<br />

Seven bedroom, less th<strong>an</strong> 7001 ft 2 840 1200<br />

Eight bedroom, less th<strong>an</strong> 8501 ft 2 960 1350<br />

Nine bedroom, less th<strong>an</strong> 10,001 ft 2 1,080 1500<br />

Ten bedroom, less th<strong>an</strong> 11,501 ft 2 1,200 1650<br />

For each additional bedroom above ten or 120 150<br />

1,500 ft 2 of living area above 11,500 ft 2


Estimating Hydraulic Loading<br />

Number of bedrooms<br />

Square footage of a<br />

facility<br />

Water conserving<br />

devices<br />

Special fixtures<br />

<br />

<br />

Multi-head showers<br />

Oversized / garden tubs


Total daily <strong>flow</strong><br />

Distribution of me<strong>an</strong> household daily per capita indoor water use <strong>for</strong> 1,188 data-logged<br />

homes (EPA 2002: <strong>Onsite</strong> Wastewater Treatment System M<strong>an</strong>ual)<br />

18%<br />

16%<br />

14%<br />

12%<br />

Relative Frequency<br />

10%<br />

8%<br />

6%<br />

4%<br />

2%<br />

0%<br />

0<br />

10<br />

20<br />

30<br />

40<br />

50<br />

60<br />

70<br />

80<br />

90<br />

100<br />

110<br />

120<br />

130<br />

140<br />

150<br />

160<br />

170<br />

180<br />

190<br />

200<br />

More<br />

Me<strong>an</strong> Indoor Gallons Per Capita Per Day


Wastewater qu<strong>an</strong>tity<br />

Residential<br />

Commercial<br />

Design<br />

Daily <strong>flow</strong><br />

Average<br />

Peak - high <strong>flow</strong><br />

Surge – disrupts<br />

system<br />

Seasonal<br />

Define the <strong>flow</strong>


Wastewater qu<strong>an</strong>tity - peaks<br />

Peak <strong>flow</strong>s<br />

<br />

<br />

<br />

Daily - runoff period<br />

Weekly<br />

Seasonal


Inst<strong>an</strong>t<strong>an</strong>eous <strong>flow</strong><br />

Use large volumes of<br />

water in short time -<br />

gpm<br />

Add hydraulic surges<br />

that disrupt treatment<br />

processes<br />

Get in<strong>for</strong>mation on<br />

water using devices:<br />

How much water is<br />

used<br />

How often it is used


Variation in <strong>flow</strong>


Flow <strong>an</strong>d treatment components<br />

All components have a maximum <strong>flow</strong> rate<br />

<br />

Design <strong>flow</strong> – maximum <strong>flow</strong> rate<br />

• Daily (gpd), Hourly (gph)<br />

Best per<strong>for</strong>m<strong>an</strong>ce<br />

<br />

<br />

Average daily <strong>flow</strong> < 70% of design capacity<br />

Flow <strong>equalization</strong> facilitates loading close to design<br />

Greater attention/monitoring needed<br />

<br />

Average daily <strong>flow</strong> > 70% of design capacity<br />

• Peak <strong>flow</strong>s are near or greater th<strong>an</strong> the design capacity<br />

Frequency may be set by regulatory agency,<br />

m<strong>an</strong>ufacturer, or designer


Flow rate <strong>for</strong> treatment<br />

Total daily <strong>flow</strong><br />

System capacity<br />

Gallons per day<br />

500, 600, 750, 1000,<br />

1250, 1500 gpd<br />

Hourly <strong>flow</strong>s<br />

<br />

<br />

Volume per hour<br />

60, 90, 120 gph<br />

Inst<strong>an</strong>t<strong>an</strong>eous <strong>flow</strong><br />

<br />

<br />

Volume per minute<br />

1, 1.1, 2 gpm<br />

components


Flow m<strong>an</strong>agement<br />

How c<strong>an</strong> <strong>flow</strong> from a facility be m<strong>an</strong>aged?<br />

<br />

<br />

<br />

Education of owner<br />

• Ch<strong>an</strong>ge water use habits to match system capacity<br />

• <strong>Onsite</strong> wastewater treatment system defines<br />

owners lifestyle<br />

Moderation within system<br />

• T<strong>an</strong>k surface area to distribute volume <strong>an</strong>d reduce<br />

velocity – Greater treatment capability<br />

• Q = V x A; gallons per inch<br />

Flow <strong>equalization</strong><br />

• Surge or <strong>flow</strong> <strong>equalization</strong> t<strong>an</strong>k with timed dosing


Flow <strong>equalization</strong>/surge t<strong>an</strong>k<br />

Moderates <strong>flow</strong> from<br />

facility<br />

Sized based on peak<br />

to be moderated<br />

<br />

<br />

<br />

Inst<strong>an</strong>t<strong>an</strong>eous<br />

Daily<br />

Weekly<br />

Improves treatment<br />

by downstream<br />

components


M<strong>an</strong>aging hydraulic loads<br />

Need to determine the length, timing <strong>an</strong>d<br />

volume of peak <strong>flow</strong>.<br />

<br />

<br />

Residential - typically diurnal pattern<br />

Restaur<strong>an</strong>ts - typically about 2 hours after<br />

lunch <strong>an</strong>d dinner.<br />

• Food preparation <strong>an</strong>d cle<strong>an</strong>-up time<br />

Variability in actual water use may not<br />

match “typical” or expected peak <strong>flow</strong><br />

pattern.


Do not rely on published<br />

design criteria when<br />

repairing <strong>an</strong> existing system


Wastewater <strong>flow</strong> characteristics<br />

Type of Facility<br />

Flow*<br />

(gal/cap/day)<br />

lbs. BOD 5<br />

†<br />

(cap/day)<br />

Runoff<br />

(hours)<br />

Shock<br />

Load<br />

Factor<br />

Airports - per passenger 5 .020 16 low<br />

Airports - per employee 15 .050 16 low<br />

Apartments - multiple family 75 .175 16 medium<br />

Boarding Houses 50 .140 16 medium<br />

Bowling Alleys - per l<strong>an</strong>e (no food) 75 .150 8 medium<br />

Campgrounds - per tent or travel trailer site - central<br />

bathhouse<br />

50 .130 16 medium<br />

Camps - construction (semi-perm<strong>an</strong>ent) 50 .140 16 medium<br />

Camps - day (no meals served) 15 .031 16 medium<br />

Camps - luxury 100 .208 16 medium<br />

Camps - resort - night <strong>an</strong>d day, with limited<br />

plumbing<br />

50 .140 16 medium<br />

Churches - per seat 5 .020 4 high<br />

Clubs - country (per resident member) 100 .208 16 medium<br />

Clubs - country (per nonresident member present) 25 .052 16 medium<br />

Courts - tourist or mobile home parks with<br />

individual bath units<br />

50 .140 16 medium<br />

Dwellings - single family 75 .170 16 medium<br />

Goldstein <strong>an</strong>d Moberg, 1973


Data required<br />

Flow characteristics:<br />

<br />

<br />

<br />

Average daily <strong>flow</strong><br />

Peak <strong>flow</strong><br />

•Regular highs<br />

•Weekly<br />

•Monthly<br />

Special occasions<br />

•How often: <strong>an</strong>nually/ bi-<strong>an</strong>nual, monthly?


Cash <strong>flow</strong> <strong>an</strong>d<br />

hydraulic <strong>flow</strong>s<br />

are related


Water use habits<br />

To perm<strong>an</strong>ently reduce <strong>flow</strong>s <strong>an</strong>d peaks,<br />

water use habits must ch<strong>an</strong>ge.<br />

Educate system owners<br />

<br />

M<strong>an</strong>agement may ch<strong>an</strong>ge on a routine basis<br />

Help system owners see the $$$$ benefit<br />

to m<strong>an</strong>aging water use<br />

Need a good working relationship with<br />

owner


Water saving devices<br />

Decreases the <strong>flow</strong><br />

No effect on the<br />

overall org<strong>an</strong>ic load


Flow <strong>equalization</strong> systems<br />

Makes the <strong>flow</strong> introduced to the treatment<br />

system more consistent.<br />

Flow <strong>equalization</strong> is import<strong>an</strong>t if:<br />

<br />

<br />

<br />

The average daily <strong>flow</strong> is ≥ 70% of the design<br />

capacity<br />

Water use habits or facility operations are<br />

variable-<br />

• Example: church only open on Sun.<br />

Frequent peaks exceed system capacity<br />

• Wash day: cle<strong>an</strong>ing service


Effects of <strong>flow</strong> <strong>equalization</strong><br />

Flow variations<br />

% FLow<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31<br />

Days


Other benefits of a <strong>flow</strong><br />

<strong>equalization</strong> system<br />

Monitoring of <strong>flow</strong>s from the surge t<strong>an</strong>k<br />

may help detect<br />

<br />

<br />

<br />

major ch<strong>an</strong>ges in <strong>flow</strong> patterns<br />

leaking effluent<br />

clogging orifices<br />

Provide storage <strong>an</strong>d spread out water<br />

delivery after a power outage.<br />

Regular feeding of the hungry microbial<br />

population which improves treatment.<br />

Regular resting


Flow <strong>equalization</strong> t<strong>an</strong>k


Control p<strong>an</strong>el should:<br />

Track doses<br />

Track time of pump operation<br />

<br />

Flow measurement<br />

Track peak enable-<br />

design <strong>flow</strong><br />

Track pump off events<br />

<br />

Set <strong>flow</strong> too HIGH<br />

Track alarms<br />

<br />

Set <strong>flow</strong> too LOW


Required volumes


Calculating t<strong>an</strong>k volume <strong>for</strong><br />

Measure the <strong>flow</strong><br />

<br />

<br />

commercial systems<br />

Read meter<br />

Calculate <strong>flow</strong><br />

Calculate volume in t<strong>an</strong>k<br />

<br />

Daily <strong>flow</strong> - timed dose<br />

Necessary storage<br />

<br />

<br />

Surge volume<br />

Storage volume [surge<br />

volume + average]<br />

Operating volume<br />

<br />

Storage volume + reserve<br />

volume<br />

T<strong>an</strong>k capacity<br />

<br />

Sum all necessary volumes<br />

[min.+ operating]


Flow controlled by surge t<strong>an</strong>k<br />

Day<br />

Daily <strong>flow</strong><br />

(gal)<br />

Timed dose<br />

(gal)<br />

Sunday pm 700<br />

Monday 250 350 600<br />

Tuesday 200 350 450<br />

Wednesday 150 350 250<br />

Thursday 200 350 100<br />

Friday 250 350 0<br />

Saturday 700 350 350<br />

Sunday 700 350 700<br />

Surge vol.<br />

(gal)


Storage volume<br />

Storage volume = surge vol. + avg.<br />

700 + 350 gpd = 1050 gallons<br />

Storage x peaking = design vol.<br />

<br />

1050 x 1.2 = 1260 gallons


Floats


Why use a peak enable option<br />

in the control p<strong>an</strong>el <strong>for</strong> a <strong>flow</strong><br />

<strong>equalization</strong> t<strong>an</strong>k?<br />

Church example<br />

Design assumptions: Sunday - 2000<br />

gallons, Wednesday – 800 gallons;<br />

average daily <strong>flow</strong> 400 gpd<br />

Actual <strong>flow</strong>: Sunday - 1000 gallons,<br />

Wednesday – 400 gallons


Peak enable option in p<strong>an</strong>el<br />

Day<br />

Daily<br />

<strong>flow</strong><br />

(gal)<br />

Surge vol. -<br />

400 g dose<br />

(gal)<br />

Sunday pm 1000 1000<br />

Monday 600 800<br />

Tuesday 200 600<br />

Wednesday 400 400 800<br />

Thursday 0 600<br />

Friday 0 400<br />

Saturday 0 200<br />

Sunday 1000 1000 1000<br />

Surge vol. -<br />

200 g dose<br />

(gal)


H<strong>an</strong>dling a monthly event<br />

Estimate the size of monthly peak <strong>flow</strong><br />

event relative to expected normal peaks<br />

Increase storage in <strong>flow</strong> <strong>equalization</strong> t<strong>an</strong>k<br />

If the estimated monthly peak was a 30%<br />

increase<br />

Multiply storage volume x 1.3


H<strong>an</strong>dling <strong>an</strong> <strong>an</strong>nual event<br />

Ch<strong>an</strong>ge operating practices<br />

<br />

<br />

<br />

<br />

Single use service<br />

Washing schedule<br />

Pre-cooking<br />

Cle<strong>an</strong>-up<br />

OSSF m<strong>an</strong>agement practices<br />

<br />

<br />

Pump extra capacity from <strong>flow</strong> <strong>equalization</strong><br />

t<strong>an</strong>k<br />

Portable toilets


Flow metering / recording<br />

Eliminates the need <strong>for</strong><br />

guessing hydraulic<br />

loading<br />

A method to collect<br />

accurate <strong>an</strong>d vital <strong>flow</strong><br />

data<br />

Aids when<br />

troubleshooting <strong>an</strong> OSSF<br />

Meter<br />

Cycle counter<br />

Elapsed time meter


Solids h<strong>an</strong>dling<br />

<br />

<br />

Sewage<br />

Effluent<br />

Pump curve<br />

<br />

<br />

Flow<br />

TDH<br />

Robust pump<br />

<br />

<br />

<br />

Pump selection<br />

High cycle rate<br />

Residential grade<br />

Commercial grade


Pump operation<br />

Micro dosing to distribute wastewater over<br />

24 hours, wastewater detention time in<br />

downstream components <strong>for</strong> treatment.<br />

Dose volume:<br />

<br />

<br />

Pump <strong>flow</strong> rate versus run time<br />

Selected based on treatment component <strong>flow</strong><br />

restrictions<br />

Dose volume: m<strong>an</strong>y inst<strong>an</strong>ces volume will<br />

be relatively low (20 to 60 gallons)


What is a timed-dosed dosed system?<br />

Flow controlled by time<br />

Timers<br />

<br />

ON: OFF<br />

Programmable Logic<br />

Controller<br />

<br />

<br />

PLC<br />

Computer


“ON” setting<br />

<br />

Timer settings<br />

Pump ‘on’ time (min) = desired dose (gal) ÷<br />

pump <strong>flow</strong> rate (gal/min)<br />

• 55 gallons per dose<br />

• 55 gal/dose ÷ 44 gpm = 1.25 minutes<br />

• 1.25 min x 60 sec/min = 75 seconds


“OFF” Setting<br />

<br />

<br />

Timer settings<br />

Design <strong>flow</strong> ÷ Gal per dose = # of Doses<br />

• 450 gpd ÷ 55 gal = 8 doses per day<br />

1440 minutes ÷ # of doses - On time = Off time<br />

• 1440 min ÷ 8 doses – 1.25 min. = 178.75 min<br />

• 178.75 min ÷ 60 min/hr = 2.9 hours


Multiple t<strong>an</strong>k construction<br />

Connected at the top <strong>an</strong>d bottom<br />

<br />

<br />

Top connection - air movement<br />

Bottom connection – water movement<br />

Stabilize bottom to prevent settling – concrete<br />

requires special considerations<br />

<br />

Breaking connections with settling<br />

Pump t<strong>an</strong>k lower elevation – full utilization of other<br />

t<strong>an</strong>k <strong>for</strong> <strong>flow</strong>


Summary<br />

Defining wastewater <strong>flow</strong> from a facility<br />

Variability in <strong>flow</strong><br />

What is <strong>flow</strong> m<strong>an</strong>agement<br />

Evaluating <strong>flow</strong> <strong>for</strong> design<br />

Choosing the right size t<strong>an</strong>k<br />

M<strong>an</strong>aging <strong>flow</strong>s greater th<strong>an</strong> system capacity<br />

Components in a p<strong>an</strong>el

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!