29.10.2014 Views

Viscous hydrodynamics for relativistic heavy-ion collisions ...

Viscous hydrodynamics for relativistic heavy-ion collisions ...

Viscous hydrodynamics for relativistic heavy-ion collisions ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Viscous</strong> <strong>hydrodynamics</strong> <strong>for</strong> <strong>relativistic</strong> <strong>heavy</strong>-<strong>ion</strong> collis<strong>ion</strong>s ∗<br />

Ulrich Heinz<br />

Department of Physics<br />

The Ohio State University<br />

191 West Woodruff Avenue<br />

Columbus, OH 43210<br />

presented at<br />

Workshop on Particle Correlat<strong>ion</strong>s and Femtoscopy (WPCF 2007)<br />

Santa Rosa, Cali<strong>for</strong>nia, August 1 – 3, 2007<br />

Collaborators:<br />

Asis Chaudhuri, Huichao Song<br />

∗ Supported by the U.S. Department of Energy (DOE)


Collective flow tests the Equat<strong>ion</strong> of State:<br />

Hydrodynamic equat<strong>ion</strong>s, ideal fluid limit:<br />

( ˙ f = time derivative in local rest frame, ∂·u = local expans<strong>ion</strong> rate)<br />

ṅ B = −n B (∂·u)<br />

˙ε = −(ε + p) (∂·u)<br />

˙u µ = ∇µ p<br />

ε + p =<br />

c2 s<br />

1+c 2 s<br />

∇ µ ε<br />

ε<br />

• flow driven by pressure gradients ∇ µ p<br />

• accelerat<strong>ion</strong> ∇µ p<br />

ε+p<br />

speed of sound c 2 s = ∂p<br />

∂ε<br />

closely related to<br />

Karsch+Laermann, hep-lat/0305025<br />

0.40<br />

2<br />

0.35 v s =dp/dε<br />

Chojnacki et al., nucl-th/0410036<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

n f =2, m=0.65<br />

n f =2, m=0.75<br />

n f =2, m=0.85<br />

n f =2, m=0.95<br />

SU(3)<br />

0.05<br />

T / T c<br />

0.00<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

“Softest point” near T = T cr .<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 1(26)


Successes of <strong>hydrodynamics</strong> at RHIC:<br />

1/ 2π dN/dyp T<br />

dp T<br />

(GeV −2 )<br />

1/2π dN/dyp T<br />

dp T<br />

(GeV −2 )<br />

Single particle spectra from central and peripheral<br />

Au+Au @ 130 A GeV (STAR, PHENIX):<br />

π + PHENIX<br />

10 2 p PHENIX<br />

p STAR<br />

π + hydro<br />

10 0<br />

p hydro<br />

10 −2<br />

most central<br />

0 1 2 3<br />

p (GeV) T<br />

10 0 PHENIX<br />

STAR<br />

hydro<br />

10 −2<br />

10 −4<br />

10 −6<br />

10 −8<br />

p<br />

60 − 92 %<br />

centrality<br />

0 − 5 %<br />

5 − 15 %<br />

15 − 30 %<br />

30 − 60 %<br />

0 1 2 3 4<br />

p (GeV) T<br />

1/2π dN/dyp T<br />

dp T<br />

(GeV −2 )<br />

1/2π dN/dyp T<br />

dp T<br />

(GeV −2 )<br />

PHENIX<br />

10 2 STAR<br />

hydro<br />

10 0<br />

centrality<br />

0 − 5 %<br />

10 −2<br />

5 − 15 %<br />

15 − 30 %<br />

10 −4<br />

30 − 60 %<br />

10 −6<br />

π − 60 − 92 %<br />

0 0.5 1 1.5 2 2.5<br />

p (GeV) T<br />

0 − 5 %<br />

PHENIX<br />

hydro<br />

10 0 5 − 15 %<br />

10 −2<br />

15 − 30 %<br />

30 − 60 %<br />

10 −4<br />

60 − 92 %<br />

centrality<br />

10 −6<br />

K +<br />

0 0.5 1 1.5 2<br />

p (GeV) T<br />

Model parameters fixed with π, ¯p spectra at b = 0;<br />

all other spectra predicted (UH & P.Kolb, hep-ph/0204061).<br />

v 2<br />

(%)<br />

v 2<br />

(%)<br />

Centrality and momentum<br />

dependence of elliptic flow v 2<br />

(STAR, PHENIX, PHOBOS):<br />

10<br />

8<br />

6<br />

4<br />

25<br />

20<br />

15<br />

10<br />

eWN<br />

sWN<br />

eBC<br />

sBC<br />

STAR<br />

2<br />

h +/−<br />

0<br />

0 0.25 0.5 0.75 1<br />

n ch<br />

/n max<br />

5<br />

STAR<br />

PHENIX<br />

EOS Q<br />

EOS H<br />

0<br />

0 1 2 3 4<br />

p (GeV) T<br />

v 2 = 〈cos(2φ)〉<br />

h +/−<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 2(26)


;<<br />

<br />

¢<br />

¡<br />

£ ¢<br />

<br />

!¢<br />

"<br />

¦§¨<br />

¤¥<br />

©<br />

©<br />

<br />

§¨<br />

<br />

<br />

$ #<br />

&%¦<br />

'(<br />

'<br />

)*<br />

+,-<br />

<br />

<br />

-1<br />

:9<br />

- 23<br />

1<br />

8<br />

- 23<br />

1<br />

7<br />

- 23<br />

1<br />

4<br />

©<br />

<br />

6<br />

6<br />

©<br />

> &<br />

<br />

#<br />

5<br />

:<br />

<br />

7<br />

4<br />

<br />

<br />

5<br />

?A@CBEDGFIHJBEDGKLDG@CMIHLMIKNDPOQMRKLDGSQMRTVUXWZY\[]^[`_baQc<br />

<br />

5<br />

<br />

5<br />

6<br />

©<br />

©<br />

5<br />

6<br />

¤¥<br />

<br />

<br />

<br />

<br />

¥<br />

<br />

<br />

<br />

<br />

<br />

7<br />

Breakdown of <strong>hydrodynamics</strong> at high p ⊥ :<br />

upper limits <strong>for</strong> the QGP viscosity<br />

D. Molnár and M. Gyulassy, NPA 697 (2002) 495<br />

D. Teaney, PRC 68 (2003) 034913<br />

./0<br />

¨§¨<br />

2 0<br />

v 2<br />

(p T<br />

)<br />

0.2<br />

0.18<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

b ≈ 6.8 fm (16-24% Central)<br />

STAR Data<br />

Γ s /τ o = 0<br />

Γ s /τ o = 0.1<br />

Γ s /τ o = 0.2<br />

=%¦<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6<br />

p T<br />

(GeV)<br />

Γ s = 4 3η/(T ·s)<br />

• For sufficiently (very) large σ el , v 2 (p ⊥ ) from covariant parton transport model MPC follows<br />

hydrodynamic curve at low p ⊥ and reproduces observed saturat<strong>ion</strong> at high p ⊥<br />

• Similar pattern is seen in viscous <strong>hydrodynamics</strong>: viscous correct<strong>ion</strong>s increase ∼ p 2 ⊥<br />

• v 2 data suggest Γ s<br />

τ<br />

< 0.1, close to minimum viscosity η s = ¯h<br />

4π<br />

(Son et al. 2002)<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 3(26)


v 2<br />

/ε<br />

Limits of ideal fluid dynamics: smaller, less dense systems<br />

STAR, PRC 66 (’02) 034904; NA49, PRC 68 (’03) 034903<br />

0.25<br />

0.2<br />

HYDRO limits<br />

(3+1)-d <strong>hydrodynamics</strong>:<br />

T. Hirano, PRC 65 (’02) 011901; 66 (’02) 054905<br />

0.08<br />

0.06<br />

STAR<br />

PHOBOS<br />

PCE<br />

CE<br />

0.15<br />

0.1<br />

0.05<br />

E lab<br />

/A=11.8 GeV, E877<br />

E lab<br />

/A=40 GeV, NA49<br />

E lab<br />

/A=158 GeV, NA49<br />

s NN<br />

=130 GeV, STAR<br />

v 2<br />

0.04<br />

0.02<br />

s NN<br />

=200 GeV, STAR Prelim.<br />

0<br />

0 5 10 15 20 25 30 35<br />

(1/S) dN ch<br />

/dy<br />

0<br />

−6<br />

−4 −2 0 2 4 6<br />

η<br />

• vmeasured 2<br />

v hydro<br />

2<br />

scales with 1 S<br />

dN ch<br />

dy<br />

∝ s init<br />

• e init > 10 GeV/fm 3 needed <strong>for</strong> v 2 to saturate be<strong>for</strong>e hadronizat<strong>ion</strong> and exhaust ideal hydro<br />

limit!<br />

• <strong>hydrodynamics</strong> predicts non-monotonic v 2 /ɛ: between AGS and RHIC it decreases, due to<br />

softening of EOS by quark-hadron transit<strong>ion</strong> (Kolb, Sollfrank, UH, PRC 62 (2000) 054909)<br />

• data show instead monotonous increase of v 2 /ɛ with √ s!?<br />

What’s going on??<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 4(26)


Hadronic dissipat<strong>ion</strong> reduces elliptic flow<br />

at <strong>for</strong>ward rapidity:<br />

T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, PLB 636 (2006) 299<br />

0.12<br />

0.1<br />

0.08<br />

b=4.0fm<br />

hydro+JAM<br />

th<br />

T =100MeV<br />

th<br />

T =169MeV<br />

PHOBOS 3-15%<br />

0.12<br />

0.1<br />

0.08<br />

b=6.3fm<br />

hydro+JAM<br />

th<br />

T =100MeV<br />

th<br />

T =169MeV<br />

PHOBOS 15-25%<br />

0.12<br />

0.1<br />

0.08<br />

b=8.5fm<br />

hydro+JAM<br />

th<br />

T =100MeV<br />

th<br />

T =169MeV<br />

PHOBOS 25-50%<br />

v 2<br />

0.06<br />

v 2<br />

0.06<br />

v 2<br />

0.06<br />

0.04<br />

0.04<br />

0.04<br />

0.02<br />

0.02<br />

0.02<br />

0<br />

-6 -4 -2 0 2 4 6<br />

η<br />

0<br />

-6 -4 -2 0 2 4 6<br />

η<br />

0<br />

-6 -4 -2 0 2 4 6<br />

η<br />

[Glauber model initial condit<strong>ion</strong>s (85% soft/15% hard)]<br />

• Not enough elliptic flow from perfect QGP fluid – some hadronic contribut<strong>ion</strong><br />

to v 2 is required<br />

• Treating the hadronic stage as ideal fluid overpredicts v 2 in peripheral collis<strong>ion</strong>s<br />

and at <strong>for</strong>ward rapidities<br />

• Dissipat<strong>ion</strong> in hadronic cascade brings theory in line with data (except <strong>for</strong> small<br />

b – excess in data due to event-by-event geometry fluctuat<strong>ion</strong>s (Miller & Snellings, PHOBOS))<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 5(26)


But is it enough?<br />

3D Hydro+Cascade Model: Ideal fluid dynamics <strong>for</strong> QGP above T c , hadronic cascade with<br />

realistic cross sect<strong>ion</strong>s (JAM) below T c<br />

v 2<br />

0.16<br />

0.14<br />

0.12<br />

0.1<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

Hirano et al., PLB 636 (2006) 299<br />

0<br />

0 50 100 150 200 250 300 350 400<br />

N part<br />

CGC, T dec<br />

=100MeV<br />

BGK, T dec<br />

=100MeV<br />

CGC, hydro+cascade<br />

BGK, hydro+cascade<br />

PHOBOS(hit)<br />

PHOBOS(track)<br />

ε<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Lappi & Venugopalan, PRC 74 (2006) 054905<br />

CYM, m = 0.2 GeV<br />

CYM, m = 0.5 GeV<br />

Glauber, N part<br />

Glauber, N coll<br />

KLN, Q s<br />

2<br />

~ Npart<br />

0<br />

0 2 4 6 8 10<br />

b [fm]<br />

• Hadronic dissipat<strong>ion</strong> reduces elliptic flow buildup in peripheral collis<strong>ion</strong>s<br />

• Color Glass Condensate (CGC-KLN) model (McLerran & Venugopalan 1994; Kharzeev, Levin, Nardi 2001) produces<br />

steeper edge of initial distribut<strong>ion</strong>, resulting in larger eccentricities ɛ than in Glauber model<br />

• Ideal <strong>hydrodynamics</strong> turns larger spatial eccentricity ɛ into larger elliptic flow v 2<br />

• For Glauber model initial condit<strong>ion</strong>s, hadronic dissipat<strong>ion</strong> fully explains the data;<br />

<strong>for</strong> CGC/KLN initial condit<strong>ion</strong>s hadronic dissipat<strong>ion</strong> not enough – need addit<strong>ion</strong>al QGP viscosity!<br />

=⇒ Need better control over initial condit<strong>ion</strong>s!<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 6(26)


Relativistic <strong>hydrodynamics</strong><br />

<strong>for</strong> viscous fluids<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 7(26)


<strong>Viscous</strong> <strong>relativistic</strong> <strong>hydrodynamics</strong> (Israel & Stewart 1979)<br />

Include shear viscosity η, neglect bulk viscosity (massless partons) and heat conduct<strong>ion</strong><br />

(µ B ≈ 0); solve<br />

with modified energy momentum tensor<br />

∂ µ T µν = 0<br />

T µν (x) = ( e(x)+p(x) ) u µ (x)u ν (x) − g µν p(x) + π µν .<br />

π µν = traceless viscous pressure tensor which relaxes locally to 2η times the shear<br />

tensor σ µν ≡ ∇ 〈µ u ν〉 on a microscopic kinetic time scale τ π :<br />

Dπ µν = − 1<br />

τ π<br />

(<br />

π µν − 2η∇ 〈µ u ν〉) − ( u µ π νλ +u ν π µλ) Du λ<br />

where D ≡ u µ ∂ µ is the time derivative in the local rest frame.<br />

Kinetic theory relates η and τ π , but <strong>for</strong> a strongly coupled QGP neither η nor<br />

this relat<strong>ion</strong> are known =⇒ treat η and τ π as independent phenomenological<br />

parameters. For consistency: τ π θ ≪ 1 (θ = ∂ µ u µ = local expans<strong>ion</strong> rate).<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 8(26)


¢<br />

£<br />

¤<br />

¥<br />

¡<br />

¢<br />

£<br />

¤<br />

¥<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

(1+1)-d viscous hydrodynamic equat<strong>ion</strong>s<br />

(Muronga & Rischke 2004, Chaudhuri & Heinz 2005)<br />

Azimuthally symmetric transverse dynamics with long. boost invariance:<br />

Use (τ, r, φ, η) coordinates and solve<br />

• hydrodynamic equat<strong>ion</strong>s <strong>for</strong> T ττ = (e+P)γ 2 r −P, T τr = (e+P)γ 2 r v r<br />

(with “effective pressure” P = p−r 2 π φφ −τ 2 π ηη ) together with<br />

• kinetic relaxat<strong>ion</strong> equat<strong>ion</strong>s <strong>for</strong> π φφ , π ηη :<br />

1<br />

τ ∂ τ<br />

1<br />

τ ∂ τ<br />

τT ττ<br />

τT τr<br />

∂ τ + v r ∂ r<br />

∂ τ + v r ∂ r<br />

+ 1 r ∂ r r(T ττ + P)v r<br />

= − p + τ 2 π ηη<br />

,<br />

τ<br />

+ 1 r ∂ r r(T τr v r + P) = + p + r2 π φφ<br />

,<br />

r<br />

π ηη = − 1 π ηη − 2η θ<br />

γ r τ π τ 2 3 − γ r<br />

,<br />

τ<br />

π φφ = − 1<br />

γ r τ π<br />

π φφ − 2η<br />

r 2<br />

θ<br />

3 − γ rv r<br />

r<br />

Close equat<strong>ion</strong>s with EOS p(e) where e = T ττ −v r T τr and v r = T τr /(T ττ +P).<br />

.<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 9(26)


¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

¡<br />

(2+1)-d viscous hydrodynamic equat<strong>ion</strong>s<br />

Heinz, Song & Chaudhuri, PRC 73 (2006) 034904<br />

Transverse dynamics w/o azimuthal symmetry, but with long. boost invariance:<br />

Use (τ, x, y, η) coordinates and solve<br />

• hydrodynamic equat<strong>ion</strong>s <strong>for</strong> T ττ = (e+p)γ 2 r −p+πττ , T τx = (e+p)γ 2 ⊥ v x+π τx ,<br />

1<br />

τ ∂ τ<br />

1<br />

τ ∂ τ<br />

1<br />

τ ∂ τ<br />

τT ττ<br />

τT τx<br />

τT τy<br />

+ ∂ x v x T ττ<br />

+ ∂ x v x T τx<br />

+ ∂ x v x T τy<br />

T τy = (e+p)γ 2 ⊥ v y+π τy :<br />

+ ∂ y v y T ττ<br />

+ ∂ y v y T τx<br />

+ ∂ y v y T τy<br />

= ScT ττ [v x , v y , π ηη , π ττ , π τx , π τy ]<br />

= ScT τx [v x , v y , π xx , π xy , π τx ]<br />

= ScT τy [v x , v y , π yy , π xy , π τy ]<br />

• kinetic relaxat<strong>ion</strong> equat<strong>ion</strong>s <strong>for</strong> π ττ , π τx , π τy , and π ηη (4, not 3!).<br />

Close equat<strong>ion</strong>s with EOS p(e) where e = M 0 − v ⊥ M and v ⊥ = M/(M 0 +p(e))<br />

(again one implicit scalar equat<strong>ion</strong>!), with the definit<strong>ion</strong>s √<br />

(M 0 , M x , M y ) ≡ (T ττ −π ττ , T τx −π τx , T τy −π τy ) and M = Mx+M 2 y,<br />

2<br />

and the relat<strong>ion</strong>s v x = M x /M, v y = M y /M.<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 10(26)


¡<br />

(2+1)-d viscous hydro: less longitudinal work, more radial flow<br />

Huichao Song<br />

Cu+Cu @ b = 0, EOS Q<br />

τ 0 = 0.6 fm c , e 0 = 30 GeV<br />

fm 3 , η s = 1<br />

4π , τ π = 0.24<br />

200 MeV<br />

T<br />

fm<br />

c , T dec = 130 MeV<br />

s(fm -3 )<br />

100<br />

10<br />

1<br />

Entropy density vs. time<br />

r=0 fm<br />

r=3fm<br />

viscous hydro 1+1d<br />

ideal hydro 1+1d<br />

viscous hydro 1d Bj<br />

ideal hydro 1d Bj ~ τ −1<br />

Cu+Cu, b=0<br />

τ −1 τ −3<br />

1 10<br />

τ−τ 0<br />

(fm/c)<br />

T (MeV)<br />

300<br />

200<br />

100<br />

r=0 fm<br />

r=9 fm<br />

Temperature vs. time<br />

Cu+Cu, b=0<br />

viscous hydro (1+1d)<br />

ideal hydro (1+1d)<br />

viscous hydro 1d Bj<br />

ideal hydro 1d Bj<br />

0<br />

0 2 4 6 8 10 12<br />

τ−τ 0<br />

(fm/c)<br />

• Radial flow develops much faster, expans<strong>ion</strong> turns 3-dimens<strong>ion</strong>al more abruptly<br />

• Shear viscosity initially reduces the cooling due to longitudinal work, but then leads to faster<br />

cooling in the fireball center than <strong>for</strong> ideal fluid later, due to stronger radial flow<br />

(seen also by Teaney 2004, Chaudhuri 2006,2007; Romatschke et al. 2006,2007)<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 11(26)


¡<br />

Central Cu+Cu (b=0): ideal vs. viscous hydro (I)<br />

Huichao Song<br />

τ 0 = 0.6 fm c , e 0 = 30 GeV<br />

fm 3 , η s = 1<br />

4π , τ π = 0.24<br />

200 MeV<br />

T<br />

fm<br />

c , T dec = 130 MeV<br />

15<br />

T=130 MeV<br />

Cu+Cu, b=0 fm (ideal hydro)<br />

0.1 0.2 0.3 0.4 0.5<br />

free hadrons<br />

0.6<br />

15<br />

T=130 MeV<br />

Cu+Cu, b=0 fm (viscous hydro)<br />

0.1 0.2 0.3 0.4 0.5<br />

free hadrons<br />

0.6<br />

τ (fm/c)<br />

10<br />

T=150 MeV<br />

HRG<br />

HRG<br />

0.7<br />

τ (fm/c)<br />

10<br />

T=150 MeV HRG<br />

HRG<br />

0.7<br />

5<br />

MP<br />

5<br />

MP<br />

QGP<br />

QGP<br />

0 2 4 6 8<br />

r (fm)<br />

0 2 4 6 8<br />

r (fm)<br />

• <strong>Viscous</strong> hydro smoothes out phase transit<strong>ion</strong> structures<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 12(26)


¡<br />

Central Cu+Cu (b=0): ideal vs. viscous hydro (II)<br />

Huichao Song<br />

τ 0 = 0.6 fm c , e 0 = 30 GeV<br />

fm 3 , η s = 1<br />

4π , τ π = 0.24<br />

200 MeV<br />

T<br />

fm<br />

c , T dec = 130 MeV<br />

15<br />

Cu+Cu, b=0 fm (ideal hydro v.s. viscous hydro)<br />

T=130 MeV<br />

free hadrons<br />

viscous hydro<br />

ideal hydro<br />

15<br />

Cu+Cu, b=0 fm (ideal hydro v.s. viscous hydro)<br />

T=130 MeV<br />

0.1 0.2 0.3 0.4 0.5<br />

free hadrons<br />

viscous hydro<br />

ideal hydro<br />

τ (fm/c)<br />

10<br />

T=150 MeV<br />

HRG<br />

HRG<br />

τ (fm/c)<br />

10<br />

T=150 MeV<br />

HRG<br />

HRG<br />

0.6<br />

0.7<br />

5<br />

MP<br />

5<br />

MP<br />

QGP<br />

QGP<br />

0 2 4 6 8<br />

r (fm)<br />

0 2 4 6 8<br />

r (fm)<br />

• <strong>Viscous</strong> hydro cools more slowly than ideal hydro, except <strong>for</strong> the center where<br />

cooling is accelerated by faster radial expans<strong>ion</strong> in the viscous case<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 13(26)


¡<br />

¡<br />

¢<br />

£<br />

(2+1)-d viscous hydro: more radial flow, flatter spectra<br />

Cu+Cu @ b = 0, EOS Q<br />

τ 0 = 0.6 fm c , e 0 = 30 GeV<br />

fm 3 , η s = 1<br />

4π , τ π = 0.24<br />

200 MeV<br />

T<br />

fm<br />

c , T dec = 130 MeV<br />

radial velocity vs. time<br />

hadron p T -spectra<br />

〈V r<br />

〉<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Cu+Cu, b=0 fm<br />

EOS Q<br />

0<br />

0 2 4 6 8 10<br />

τ-τ 0<br />

(fm/c)<br />

(1/2π)dN/dyp T<br />

dp T<br />

(GeV -2 )<br />

10 2<br />

10 0<br />

10 -2<br />

10 -4<br />

10 -6<br />

π −<br />

K +<br />

P<br />

b=0<br />

<strong>Viscous</strong> hydro (evolut<strong>ion</strong>+spectra correct<strong>ion</strong>)<br />

viscoushydro (evolut<strong>ion</strong> part)<br />

ideal hydro<br />

0 1 2 3<br />

P T<br />

(GeV)<br />

• For identical initial and freeze-out condit<strong>ion</strong>s, viscous evolut<strong>ion</strong> yields more radial flow and flatter<br />

spectra (as previously seen by Chaudhuri 2006,2007; Romatschke 2007)<br />

• Effect on b = 0 spectra can be largely absorbed by starting viscous hydro later with lower initial<br />

density (Romatschke et al., 2006,2007)<br />

E dN<br />

d 3 p =<br />

Σ<br />

p·d 3 σ(x)<br />

(2π) 3<br />

f eq (x, p) + δf(x, p)<br />

=<br />

Σ<br />

p·d 3 σ(x)<br />

(2π) 3 f eq (x, p)<br />

1 + 1 p α p β π αβ (x)<br />

2 T 2 (x) (e+p)(x)<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 14(26)


¡<br />

Non-central collis<strong>ion</strong>s (Cu+Cu @ b=7 fm)<br />

Huichao Song<br />

τ 0 = 0.6 fm c , e 0 = 30 GeV<br />

fm 3 , η s = 1<br />

4π , τ π = 0.24<br />

200 MeV<br />

T<br />

fm<br />

c , T dec = 130 MeV<br />

τ(fm/c)<br />

Cu+Cu, b=7 (ideal hydro)<br />

Cu+Cu, b=7 fm (viscous hydro)<br />

0.7 0.6 0.5 0.4 0.3 0.2 0.1<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

10 10<br />

y<br />

T=130MeV<br />

T=150MeV<br />

free hadrons<br />

HRG<br />

5 HRG<br />

5<br />

x<br />

τ(fm/c)<br />

0.7<br />

0.6<br />

0.5 0.3<br />

10 10<br />

free hadrons<br />

y<br />

0.4<br />

0.2<br />

T=130MeV<br />

0.1<br />

T=150MeV<br />

HRG<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

5 HRG<br />

5<br />

x<br />

MP<br />

MP<br />

QGP<br />

QGP<br />

Y<br />

-5 0 5<br />

r (fm)<br />

X<br />

Y<br />

-5 0 5<br />

r (fm)<br />

X<br />

• <strong>Viscous</strong> hydro smoothes out phase transit<strong>ion</strong> structures<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 15(26)


¡<br />

Non-central collis<strong>ion</strong>s (Cu+Cu @ b=7 fm)<br />

Huichao Song<br />

τ 0 = 0.6 fm c , e 0 = 30 GeV<br />

fm 3 , η s = 1<br />

4π , τ π = 0.24<br />

200 MeV<br />

T<br />

fm<br />

c , T dec = 130 MeV<br />

Cu+Cu, b=7 fm (along x axis)<br />

Cu+Cu, b=7fm (along y axix)<br />

10<br />

0.7<br />

0.6<br />

0.5 0.4 0.3<br />

T=130MeV<br />

0.2<br />

0.1<br />

free hadrons<br />

0.1 0.20.3 0.4 0.5 0.6 0.7<br />

0.7 0.6 0.5 0.4 0.3 0.2<br />

0.1 0.2 0.3 0.4 0.5 0.6 0.7<br />

0.1<br />

10 10<br />

T=130 MeV<br />

free hadrons<br />

τ(fm/c)<br />

5<br />

viscous<br />

T=150 MeV<br />

HRG<br />

HRG<br />

ideal<br />

τ(fm/c)<br />

viscous<br />

T=150 MeV<br />

HRG<br />

ideal<br />

5 HRG<br />

5<br />

MP<br />

MP<br />

QGP<br />

QGP<br />

X<br />

-5 0 5<br />

r (fm)<br />

X<br />

Y<br />

-5 0 5<br />

r (fm)<br />

Y<br />

• <strong>Viscous</strong> hydro smoothes out phase transit<strong>ion</strong> structures<br />

• Other than that, viscous fluid cools more slowly than ideal fluid (less radial flow than b=0)<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 16(26)


(2+1)-d viscous hydro: less momentum anisotropy<br />

Cu+Cu @ b = 7 fm, EOS Q, same initial and final condit<strong>ion</strong>s<br />

<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

flow anisotropy vs. time<br />

Cu+Cu, b=7 fm<br />

EOS Q<br />

0<br />

0 2 4 6 8<br />

τ−τ 0<br />

spatial eccentricity and momentum anisotropy<br />

ε x<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

Cu+Cu, b=7 fm<br />

viscous hydro<br />

ideal hydro<br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

viscous hydro<br />

ideal hydro<br />

0 2 4 6 8<br />

τ−τ 0<br />

ε p<br />

0.08<br />

µν<br />

viscous hydro (ideal T 0 )<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

viscous hydro (full T µν )<br />

ideal hydro<br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

• Flow anisotropy develops faster initially, but stalls earlier than <strong>for</strong> ideal fluids;<br />

• Source eccentricity decays initially faster, but more slowly later;<br />

• Total momentum anisotropy is reduced by almost 50% relative to ideal fluid;<br />

viscous pressure components contribute very strongly to this reduct<strong>ion</strong> during the first 3-4 fm/c<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 17(26)


Elliptic flow from (2+1)-dim. viscous <strong>hydrodynamics</strong> (I)<br />

Cu+Cu @ b = 7 fm<br />

(Initial condit<strong>ion</strong>s adjusted such that at b=0 same π, ¯p spectra as in ideal hydro)<br />

v 2<br />

0.4<br />

η/s = 1/4π, τ π = 0.24(200 MeV/T ) fm/c<br />

<strong>Viscous</strong> hydro (evolut<strong>ion</strong> + spectra correct<strong>ion</strong>)<br />

<strong>Viscous</strong> hydro (evolut<strong>ion</strong> part)<br />

ideal hydro<br />

0.3<br />

0.2<br />

Cu+Cu, b=7 fm<br />

π −<br />

K +<br />

P<br />

0.1<br />

0<br />

0 0.5 1 1.5 2 2.5 3<br />

P T<br />

(GeV)<br />

• Elliptic flow very sensitive to even minimal shear viscosity!<br />

• <strong>Viscous</strong> correct<strong>ion</strong>s to equilibrium distribut<strong>ion</strong> fct. have significant effect on v 2 (Teaney 2003),<br />

but at low p T the effects from the reduced hydrodynamic flow anisotropy are larger<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 18(26)


Elliptic flow from (2+1)-dim. viscous <strong>hydrodynamics</strong> (II)<br />

Cu+Cu @ b = 7 fm<br />

(Initial condit<strong>ion</strong>s adjusted such that at b=0 same π, ¯p spectra as in ideal hydro)<br />

v 2<br />

0.4<br />

<strong>Viscous</strong> hydro (evolut<strong>ion</strong> + spectra correct<strong>ion</strong>)<br />

<strong>Viscous</strong> hydro (evolut<strong>ion</strong> part)<br />

ideal hydro<br />

0.3<br />

0.2<br />

Cu+Cu, b=7 fm<br />

η/s=0.08, τ π<br />

=1.5η/sT<br />

η/s=0.08, τ π<br />

=3η/sT<br />

π −<br />

0.1<br />

0<br />

0 1 2 3<br />

P T<br />

(GeV)<br />

• Faster kinetic relaxat<strong>ion</strong> at fixed η/s reduces viscous effects −→ Janik 2007<br />

Ulrich Heinz <strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 19(26)


The limits of viscous <strong>hydrodynamics</strong><br />

At sufficiently large p T , viscous correct<strong>ion</strong>s become large even if η/s is small.<br />

|δN(p)| > 1 2 |N 0(p)| indicates breakdown of the assumpt<strong>ion</strong>s:<br />

10<br />

Where viscous hydro breaks down<br />

Cu+Cu<br />

p T<br />

(GeV)<br />

from viscous hydro calculat<strong>ion</strong> b=0 fm<br />

from viscous hydro calculat<strong>ion</strong> b=7 fm<br />

1<br />

0 50 100 150 200<br />

e 0<br />

(GeV/fm 3 )<br />

• For larger initial energy densities, p T -range of applicability of viscous hydro to describe<br />

hadron spectra increases.<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 20(26)


¡<br />

¡<br />

¢<br />

£<br />

(GeV/fm 3 )<br />

0<br />

-1<br />

Which viscous pressure components dominate?<br />

<br />

Cu+Cu @ b = 7 fm, EOS Q<br />

τ 0 = 0.6 fm c , e 0 = 30 GeV<br />

fm 3 , η s = 1<br />

4π , τ π = 0.24<br />

<br />

<br />

τ 2 <br />

0.025<br />

(GeV/fm 3 )<br />

0<br />

<br />

<br />

<br />

<br />

Cu+Cu, b=7 fm<br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

-2<br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

(GeV/fm 3)<br />

0<br />

-1<br />

-2<br />

200 MeV<br />

T<br />

fm<br />

c , T dec = 130 MeV<br />

Cu+Cu, b=7 fm<br />

-p-τ∂ x<br />

(pv x<br />

)-τ∂ y<br />

(pv y<br />

)-τ 2 π ηη<br />

-τ∂ x<br />

p-τ∂ x<br />

π xx<br />

-τ∂ y<br />

p-τ∂ y<br />

π yy<br />

full viscous <br />

full viscous <br />

full viscous <br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

• For constant η/s, viscous pressure effects (relative to p) are largest at early times<br />

• Largest viscous pressure components are π ηη , π xx , π yy .<br />

• At late times, all viscous pressure components become much smaller than thermodynamic pressure<br />

• Still, effects on spectra are large at high p T , due to factor (p T /T ) 2<br />

E dN<br />

d 3 p =<br />

Σ<br />

p·d 3 σ(x)<br />

(2π) 3<br />

f eq (x, p) + δf(x, p)<br />

=<br />

Σ<br />

p·d 3 σ(x)<br />

(2π) 3 f eq (x, p)<br />

1 + 1 p α p β π αβ (x)<br />

2 T 2 (x) (e+p)(x)<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 21(26)


Sensitivity to initial values <strong>for</strong> viscous pressure tensor (I)<br />

Romatschke & Romatschke 2007 seem to find much smaller viscous effects than we do. But they<br />

initialize their evolut<strong>ion</strong> with π mn = 0. Could this be the origin of the discrepancy? No!<br />

<br />

0.06<br />

0.05<br />

0.04<br />

0.03<br />

0.02<br />

0.01<br />

flow anisotropy vs. time<br />

Cu+Cu, b=7 fm<br />

EOS Q<br />

0<br />

0 2 4 6 8<br />

τ−τ 0<br />

spatial eccentricity and momentum anisotropy<br />

ε x<br />

0.3<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

ideal hydro<br />

viscous hydro, initialized by π mn =2ησ mn<br />

viscous hydro, initialized by π mn =0<br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

0.1<br />

<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

0 2 4 6 8<br />

τ−τ 0<br />

ε p<br />

0.08<br />

µν<br />

viscous hydro (ideal T 0 )<br />

0.06<br />

0.04<br />

0.02<br />

0<br />

viscous hydro (full T µν )<br />

ideal hydro<br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

Green lines show results <strong>for</strong> π mn<br />

0<br />

= 0, with otherwise identical parameters<br />

=⇒ weak sensitivity to initial condit<strong>ion</strong>s <strong>for</strong> viscous pressure tensor.<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 22(26)


¡<br />

Sensitivity to initial values <strong>for</strong> viscous pressure tensor (II)<br />

Green lines: π mn<br />

0 = 0; Other lines: π mn<br />

0 = 2ησ mn ≡ 2η∇ 〈m u n〉 .<br />

τ 0 = 0.6 fm c , e 0 = 30 GeV<br />

fm 3 , η s = 1<br />

4π , τ π = 0.24<br />

200 MeV<br />

T<br />

fm<br />

c , T dec = 130 MeV<br />

v 2<br />

0.3<br />

0.2<br />

0.1<br />

p<strong>ion</strong> elliptic flow<br />

Cu+Cu, b=7 fm, EOS Q<br />

ideal hydro<br />

viscous hydro, initialized by π mn =0<br />

viscous hydro, initialized by π mn =2ησ mn<br />

<strong>Viscous</strong> hydro (evolut<strong>ion</strong> + spectra correct<strong>ion</strong>)<br />

<strong>Viscous</strong> hydro (evolut<strong>ion</strong> part)<br />

0<br />

0 1 2 3<br />

P T<br />

(GeV)<br />

π −<br />

(GeV/fm 3 )<br />

largest viscous pressure components vs. time<br />

0<br />

-1<br />

<br />

<br />

<br />

τ 2 <br />

(GeV/fm 3 )<br />

0<br />

<br />

<br />

<br />

<br />

Cu+Cu, b=7 fm<br />

EOS Q<br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

0 2 4 6 8<br />

τ−τ 0<br />

(fm/c)<br />

• After τ ∼ 1 fm/c ∼ 4τ π , viscous pressure tensor has lost all memory of initial<br />

condit<strong>ion</strong>s!<br />

• Effects on final v 2 small – discrepancy with (Romatschke) 2 unresolved<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 23(26)


Other tests of the viscous hydro code<br />

• Setting η = 0, code accurately reproduces results obtained with P. Kolb’s ideal<br />

fluid AZHYDRO code.<br />

• For transversally homogeneous initial condit<strong>ion</strong>s (infinite slab, no transverse<br />

flow), fixed c 2 s (p = e/3) and τ π → 0 (Navier-Stokes limit), code accurately<br />

reproduces known analytic solut<strong>ion</strong> <strong>for</strong> e(τ).<br />

• For small η and τ π , code based on 2nd-order Israel-Stewart approach accurately<br />

reproduces results from a 1st-order Navier-Stokes code (this tests the kinetic<br />

evolut<strong>ion</strong> algorithm <strong>for</strong> π mn ):<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 24(26)


η/s = 0.01 fm/T, τ π = 0.03 fm/c, ideal gas EoS w/o phase transit<strong>ion</strong><br />

v 2<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

ideal hydro<br />

1st order viscous hydro (evolut<strong>ion</strong>+spectra correct<strong>ion</strong>s)<br />

1st order viscous hydro (evolut<strong>ion</strong> correct<strong>ion</strong>s)<br />

2nd order viscous hydro (evolut<strong>ion</strong>+ spectra correct<strong>ion</strong>s)<br />

2nd order viscous hydro (evolut<strong>ion</strong> correct<strong>ion</strong>s)<br />

gluons<br />

Cu+Cu, b=7 fm<br />

EOS I<br />

0 1 2 3 4<br />

P T<br />

(GeV)<br />

• Still need to check that σ mn is correctly computed.<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 25(26)


Summary<br />

• Shear viscosity reduces the longitudinal pressure but increases the transverse<br />

pressure in <strong>heavy</strong> <strong>ion</strong> collis<strong>ion</strong><br />

=⇒ slower cooling by longitudinal work initially, but faster cooling by stronger<br />

transverse expans<strong>ion</strong> later<br />

• While viscous pressure effects on angle-averaged p T -spectra (radial flow) can be<br />

largely absorbed by changing the initial condit<strong>ion</strong>s (starting the transverse expans<strong>ion</strong><br />

later and with lower initial energy density), this increases the destructive<br />

effects of shear viscosity on the buildup of elliptic flow.<br />

• The effects of shear viscosity on elliptic flow are shockingly large; even Son’s<br />

minimal viscosity η/s = 1/4π seems incompatible with RHIC data =⇒ needs<br />

more checking.<br />

• Shorter kinetic relaxat<strong>ion</strong> times <strong>for</strong> the viscous pressure tensor seem to reduce<br />

the effects from shear viscosity.<br />

• <strong>Viscous</strong> correct<strong>ion</strong>s to the momentum spectra are sensitive to details of the<br />

flow pattern at freeze-out and not easily captured with blast-wave model<br />

parametrizat<strong>ion</strong>s.<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 26(26)


Supplements<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 27(26)


Rest mass dependence of differential elliptic flow<br />

(the “fine structure”)<br />

STAR Coll., PRL 87, 182301 (2001) and PRL 92, 052302 (2004); PHENIX Coll., PRL 91, 182301 (2003)<br />

Anisotropy Parameter v 2<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Hydro model<br />

π<br />

K<br />

p<br />

Λ<br />

PHENIX Data<br />

π + +π -<br />

+ -<br />

K +K<br />

p+p<br />

STAR Data<br />

0<br />

K S<br />

Λ+Λ<br />

0 2 4 6<br />

Transverse Momentum p T<br />

(GeV/c)<br />

v 2<br />

(%)<br />

10<br />

5<br />

STAR<br />

hydro EOS Q<br />

hydro EOS H<br />

π + + π −<br />

p + p<br />

0<br />

0 0.25 0.5 0.75 1<br />

p (GeV) T<br />

Data follow the hydrodynamically predicted rest mass dependence of v 2 (p ⊥ ) out<br />

to p ⊥ ∼ 1.5 GeV <strong>for</strong> mesons and out to p ⊥ ∼ 2.3 GeV <strong>for</strong> baryons<br />

=⇒ bulk of matter (> 99% of all particles) behaves hydrodynamically!<br />

Note: mass-splitting of v 2 (“fine structure”) sensitive to EOS!<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 28(26)


Radial flow profiles <strong>for</strong> b=0 Cu+Cu:<br />

η/s = 1/4π, τ π = 0.24(200 MeV/T ) fm/c<br />

Cu+Cu, b=0 fm<br />

v r<br />

0.8<br />

0.6<br />

e dec<br />

=1.65GeV/fm 3<br />

v r<br />

0.8<br />

0.6<br />

e dec<br />

=0.45GeV/fm 3<br />

viscous hydro<br />

ideal hydro<br />

0.4<br />

QGP-MP<br />

0.4<br />

MP-HRG<br />

0.2<br />

0.2<br />

0<br />

0<br />

0 2 4 6 r (fm) 0 2 4 6 r (fm)<br />

v r<br />

v r<br />

0.8<br />

0.8<br />

0.6<br />

T dec<br />

=150 MeV<br />

0.6<br />

T dec<br />

=130 MeV<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0<br />

0 2 4 6<br />

r (fm)<br />

0<br />

0 2 4 6<br />

r (fm)<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 29(26)


Israel-Stewart or Navier-Stokes?<br />

Deviat<strong>ion</strong>s of the dynamical viscous pressure components from their relaxed values<br />

are significant:<br />

2<br />

2<br />

2(〈π 1st 〉-〈π 2nd 〉)/(〈π 1st 〉+〈π 2nd 〉)<br />

1.5<br />

1<br />

0.5<br />

0<br />

Cu+Cu, b=0 fm<br />

η/s=0.08, τ π<br />

=3η/sT<br />

η/s=0.08, τ π<br />

=1.5η/sT<br />

2(〈π 1st 〉-〈π 2nd 〉)/(〈π 1st 〉+〈π 2nd 〉)<br />

1<br />

0<br />

-1<br />

Cu+Cu, b=0 fm<br />

π ηη π φφ 0 5 10<br />

η/s=0.08, τ π<br />

=3η/sT<br />

η/s=0.08, τ π<br />

=1.5η/sT<br />

τ 2 π ηη<br />

π xx (π yy )<br />

-0.5<br />

0 5 10<br />

τ−τ 0<br />

(fm/c)<br />

• AdS/CFT approach (Janik 2007) suggests τ π = τ π Boltz<br />

30<br />

, but<br />

-2<br />

τ−τ 0<br />

(fm/c)<br />

• τ π → 0 =⇒ Navier-Stokes =⇒ problems with acausal signal propagat<strong>ion</strong>!<br />

How to recognize numerical problems with causality?!<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 30(26)


<strong>Viscous</strong> correct<strong>ion</strong>s to p T -spectra:<br />

Blast wave model vs. real <strong>hydrodynamics</strong><br />

Using a blast-wave model parametrizat<strong>ion</strong> of the freeze-out distribut<strong>ion</strong>, Teaney<br />

(2003) found opposite sign of viscous correct<strong>ion</strong> effects on p T -spectra:<br />

Vr<br />

1<br />

0.5<br />

Blast Wave model<br />

u r<br />

=(0.5r/R 0<br />

)θ(R 0<br />

-r)<br />

R 0<br />

=6fm<br />

Vr<br />

1<br />

0.5<br />

ideal hydro EOS I<br />

Cu+Cu *<br />

6<br />

b=0fm<br />

4<br />

2<br />

1<br />

*<br />

*<br />

*<br />

Vr<br />

1<br />

0.5<br />

along freeze-out surface<br />

ideal hydro EOSI<br />

Cu+Cu, b=0fm<br />

0.005<br />

π rr (GeV/fm 3 )<br />

0<br />

0 2 4 6 8<br />

0<br />

0<br />

π rr =2η∇ 〈r u r〉<br />

τ f<br />

=4.1fm/c<br />

2 4 6 8<br />

r (fm)<br />

r (fm)<br />

0<br />

0 2 4 6 8<br />

0<br />

π rr (GeV/fm 3 )0.5<br />

-0.5<br />

0<br />

x1<br />

x3<br />

x10<br />

x50<br />

π rr =2η∇ 〈r u r〉<br />

*<br />

*<br />

*<br />

2 4 6 8<br />

r (fm)<br />

τ (fm/c)<br />

1<br />

2<br />

4<br />

6<br />

r (fm)<br />

π rr (GeV/fm 3 )<br />

0<br />

0 2 4 6<br />

0.02<br />

0.01<br />

0<br />

-0.01<br />

-0.02<br />

π rr =2η∇ 〈r u r〉<br />

-0.03<br />

0 2 4 6<br />

• Velocity gradients near surface dominate viscous correct<strong>ion</strong>s to spectra!<br />

• Blast wave model too unrealistic.<br />

r(fm)<br />

r(fm)<br />

<strong>Viscous</strong> <strong>hydrodynamics</strong> (WPCF, 08/01/2007) 31(26)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!