01.11.2014 Views

March 2011 - Career Point

March 2011 - Career Point

March 2011 - Career Point

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

As 'm' of VP =<br />

2<br />

1<br />

t<br />

t<br />

1<br />

– 0<br />

– 0<br />

2<br />

= t 1<br />

t2<br />

– 0<br />

and 'm' of VQ = = t 2 ,<br />

t2<br />

– 0<br />

VP ⊥ VQ ⇒ t 1 .t 2 = – 1 ...(i)<br />

The equation of the normal to a curve at (x 1 , y 1 ) is<br />

–1<br />

y – y 1 =<br />

. (x – x 1 ).<br />

⎛ dy ⎞<br />

⎜ ⎟<br />

⎝ dx ⎠<br />

Here, y = x 2<br />

( x1,y1<br />

)<br />

dy<br />

∴ = 2x. dx<br />

∴ the equation of the normal at P(t 1 ,<br />

y –<br />

2<br />

t 1 =<br />

–1<br />

(x – t 1 )<br />

2t<br />

1<br />

or 2t 1 y + x = 2 t 1<br />

3 + t 1<br />

2<br />

t 1 ) is<br />

...(ii)<br />

Similarly, the equation of the normal at Q(t 2 ,<br />

2<br />

t 2 ) is<br />

2t 2 y + x = 2 t 3 2 + t 2<br />

...(iii)<br />

Eliminating t 1 , t 2 from (i), (ii) and (iii) we get the<br />

locus of M.<br />

(ii) – (iii) ⇒ 2y(t 1 – t 2 ) = 2( t 3 1 – 3<br />

t 2 ) + (t 1 – t 2 )<br />

or 2y = 2( t 1<br />

2 + t 1 t 2 +<br />

2<br />

t 2 ) + 1<br />

Also, t 2 × (ii) – t 1 × (iii)<br />

⇒ (t 2 – t 1 )x = (2 t 1<br />

3 + t 1 )t 2 – (2 t 2<br />

3 + t 2 )t 1<br />

= 2t 1 t 2 ( t 1<br />

2 –<br />

2<br />

t 2 )<br />

or x = – 2t 1 t 2 (t 1 + t 2 )<br />

From (i) and (v), x = 2(t 1 + t 2 )<br />

or t 1 + t 2 = 2<br />

1 x<br />

...(iv)<br />

...(v)<br />

...(vi)<br />

From (iv), 2y = 2{t 1 + t 2 ) 2 – t 1 t 2 } + 1<br />

⎪⎧<br />

2<br />

⎛ 1 ⎞ ⎪⎫<br />

= 2⎨⎜<br />

x ⎟ + 1⎬<br />

+ 1, using (i) and (vi)<br />

⎪⎩ ⎝ 2 ⎠ ⎪⎭<br />

∴ the equation of the required locus is<br />

2<br />

x<br />

2y = + 3<br />

2<br />

or x 2 = 2(2y – 3), which is a parabola.<br />

nπ+θ<br />

4. Show that<br />

∫| sin x | dx = 2n + 1 – cos θ, where<br />

n ∈ N and 0 ≤ θ < π.<br />

nπ+θ<br />

Sol. I =<br />

∫|<br />

sin x | dx<br />

0<br />

0<br />

0<br />

nπ<br />

nπ+θ<br />

=<br />

∫| sin x | dx +<br />

∫| sin x | dx = I 1 + I 2 .<br />

nπ<br />

nπ<br />

π<br />

Now, I 1 =<br />

∫| sin x | dx = n<br />

∫| sin x | dx ,<br />

0<br />

0<br />

(Q |sin x| is a periodic function of the period π)<br />

π<br />

= n<br />

∫<br />

sin x dx<br />

0<br />

(Q sin x is positive in the interval)<br />

x<br />

x 0<br />

= n [– cos ] = n (1 + 1) = 2n.<br />

nπ+θ<br />

I 2 =<br />

∫| sin x | dx . Putting x = nπ + z,<br />

nπ<br />

θ<br />

I 2 =<br />

∫| sin( nπ + z)<br />

| dz = | sin z | dz<br />

0<br />

θ<br />

∫<br />

0<br />

= | sin x | dx<br />

θ<br />

∫<br />

0<br />

= sin x dx (Q in 0 ≤ θ < π, |sin x| = sin x)<br />

θ<br />

θ<br />

∫<br />

0<br />

= [– cos x ] 0 = – cos θ + 1<br />

∴ I 1 + I 2 = 2n + 1 – cos θ.<br />

5. The decimal parts of the logarithms of two numbers<br />

taken at random are found to six places of decimal.<br />

What is the chance that the second can be subtracted<br />

from the first without "borrowing"?<br />

Sol. For each column of the two numbers,<br />

n(S) = number of ways to fill the two places by the<br />

digits 0, 1, 2, ... , 9<br />

= 10 × 10 = 100.<br />

x<br />

× × × × × ×<br />

y<br />

× × × × × ×<br />

Let E be the event of subtracting in a column without<br />

borrowing. If the pair of digits be (x, y) in the column<br />

where x is in the first number and y is in the second<br />

number then<br />

E = {(0, 0), (1, 0), (2, 0), .. ,(9, 0),<br />

(1, 1), (2, 1), ..., (9, 1),<br />

(2, 2), (3, 2), ..., (9, 2),<br />

(3, 3), (4, 3), ..., (9, 3),<br />

......<br />

(8, 8), (9, 8),<br />

(9, 9)}<br />

10.11<br />

∴ n(E) = 10 + 9 + 8 + ... + 2 + 1 = = 55<br />

2<br />

∴ the probability of subtracting without borrowing<br />

55<br />

in each column = . 100<br />

XtraEdge for IIT-JEE 44 MARCH <strong>2011</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!