01.11.2014 Views

Cosmic Ray Detection with IceTop / IceCube - Villa Olmo

Cosmic Ray Detection with IceTop / IceCube - Villa Olmo

Cosmic Ray Detection with IceTop / IceCube - Villa Olmo

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Cosmic</strong> <strong>Ray</strong> <strong>Detection</strong> <strong>with</strong><br />

<strong>IceTop</strong> / <strong>IceCube</strong><br />

Tilo Waldenmaier<br />

for the <strong>IceCube</strong> Collaboration<br />

ICATPP Conference in Como, Italy<br />

October 8, 2010


Outline<br />

<br />

<br />

<br />

The <strong>IceCube</strong> and <strong>IceTop</strong> detectors<br />

Air Shower Reconstruction <strong>with</strong> <strong>IceTop</strong><br />

<strong>Cosmic</strong> <strong>Ray</strong> Physics <strong>with</strong> <strong>IceCube</strong><br />

► All Particle Energy Spectrum <strong>with</strong> <strong>IceTop</strong><br />

► Muon Identification <strong>with</strong> <strong>IceTop</strong><br />

► <strong>IceTop</strong>-<strong>IceCube</strong> coincident Events<br />

<br />

Summary<br />

2


<strong>IceCube</strong> Site<br />

Amundsen-Scott Station<br />

Drill Camp 09/10<br />

<strong>IceCube</strong> Lab<br />

Geogr. South Pole<br />

Martin A. Pomerantz<br />

Observatory (MAPO)<br />

South Pole<br />

Telescope (SPT)<br />

3


The <strong>IceCube</strong> Detector<br />

<strong>IceCube</strong> Lab<br />

<strong>IceTop</strong><br />

81 stations consisting of 2 Č-detectors each<br />

Instrumented area: 1 km 2<br />

Deployment Years<br />

<strong>IceCube</strong> Array<br />

86 strings including 60 DOMs<br />

Instrumented volume: 1 km 3<br />

DeepCore<br />

6 additional low energy strings<br />

IC01: 2004 / 2005<br />

IC09: 2005 / 2006<br />

IC22: 2006 / 2007<br />

IC40: 2007 / 2008<br />

IC59: 2008 / 2009<br />

IC79: 2009 / 2010<br />

IC86: 2010 / 2011<br />

Digital Optical Module<br />

4


Digital Optical Module<br />

Design Requirements:<br />

Minimal signal loss<br />

Minimal number of channels (cables)<br />

Minimal data traffic<br />

<br />

<br />

PMT <strong>with</strong> integrated HV-converter<br />

Onboard Digitalisation<br />

►<br />

ATWD, 128 Samples in 422 ns<br />

► FADC, 256 samples in 6.4 µs<br />

<br />

<br />

<br />

Local Coincidence <strong>with</strong> neighbors<br />

(noise suppression)<br />

Onboard calibration and tests<br />

Autonomous operation<br />

32 cm<br />

5


<strong>IceTop</strong> Layout<br />

String 43<br />

String 35<br />

125 m<br />

Tank 35A<br />

~ 25 m<br />

10 m<br />

Tank 35B<br />

6


<strong>IceTop</strong> Station<br />

7


<strong>IceTop</strong> Station<br />

LG DOM<br />

HG DOM<br />

Perlite<br />

0.9 m<br />

0.57 m<br />

ICE<br />

diffuse reflective coating<br />

1.86 m<br />

8


Local Coincidence and Trigger<br />

Tank A<br />

Tank B<br />

High Gain:<br />

► High Voltage: ~ 1250 V<br />

► Gain: 5E6<br />

61<br />

notifies<br />

63<br />

► Disc. Thr.: ~ 20 PE<br />

► Disc. Rate: ~ 1600 Hz<br />

► LC-Rate: ~ 20 Hz<br />

Low Gain:<br />

62<br />

64<br />

► High Voltage: ~ 750 V<br />

► Gain: 1E5<br />

► Disc. Thr.: ~ 200 PE<br />

► Disc. Rate: 30-100 Hz<br />

LC-Window: ±1µs<br />

► LC-Rate: ~ 7 Hz<br />

Simple Majority Trigger condition:<br />

6 LC-hits (at least 2 stations) <strong>with</strong>in 5 µs (readout window: ±10 µs, IC59-Rate: 22 Hz)<br />

9


Muon Calibration<br />

Calibrating the tank signals in Vertical Equivalent Muons<br />

HG-LG crossover<br />

10


Tank Signal Distribution<br />

HG-LG transition<br />

Few DOMs (2-3) <strong>with</strong><br />

low cross-over values<br />

Dynamic range: 4,5 orders of magnitude<br />

~ 20 VEM (~2500 PE)<br />

11


Air Shower Reconstruction<br />

<strong>with</strong> <strong>IceTop</strong><br />

12


Lateral Distribution<br />

Energy: ~ 10 PeV<br />

S 125<br />

125 m<br />

Double Logarithmic Parabola:<br />

E.m. shower size at R=125 m<br />

(Energy estimator)<br />

Slope ≈ 3 at R=125 m<br />

(slightly composition dependent)<br />

ϰ = 0.303<br />

(constant for hadronic primaries)<br />

13


Shower Front Curvature<br />

Zenith: ~ 26.3 deg<br />

Approximately constant shape of shower front for hadronic primaries:<br />

May slightly vary <strong>with</strong> energy and primary type → ongoing work<br />

14


Fit Procedure and Resolutions<br />

<br />

Negative Log-Likelihood minimization including charge, timing and silent stations<br />

Seven parameters: x, y, θ, φ, S 125<br />

, β, t 0<br />

<br />

Minimum of 5 stations (10 tanks) required.<br />

(<strong>IceTop</strong>-26)<br />

(<strong>IceTop</strong>-26)<br />

15


Energy Range & Physics Goals<br />

Energy Threshold (# Stations ≥ 5)<br />

90%<br />

3.2 PeV (Iron)<br />

1.8 PeV (Proton)<br />

<strong>IceTop</strong><br />

Threshold < 1 PeV for # Stations ≥ 3 (less accurate)<br />

Main Physics Motivations:<br />

<strong>Cosmic</strong> ray energy spectrum between 1 PeV and 1 EeV<br />

<strong>Cosmic</strong> ray composition<br />

(Search for transition between galactic and extra-galactic cosmic rays)<br />

Test of hadronic interaction models<br />

16


<strong>Cosmic</strong> <strong>Ray</strong> Physics <strong>with</strong> <strong>IceCube</strong><br />

17


Air Shower Observables<br />

Primary energy: 1 – 100 PeV<br />

Electromagnetic particles<br />

O(10) – O(100) MeV<br />

<strong>IceTop</strong><br />

Low energy muons<br />

O(1) – O(10) GeV<br />

High energy muons (> 500 GeV)<br />

# Muons: O(10) - (1000)<br />

Data<br />

<strong>IceCube</strong><br />

Muon Estimator<br />

Iron<br />

Protons<br />

<strong>IceTop</strong> Energy<br />

18


<strong>IceTop</strong> Energy Reconstruction<br />

Protons<br />

Differential Flux Spectra in S 125<br />

Energy conversion function:<br />

Depend on zenith band and primary composition<br />

→ Reconstruction of primary energy spectra depends on a priori composition assumption<br />

19


Reconstruction Performance<br />

(<strong>IceTop</strong>-26)<br />

Energy Resolution (sigma)<br />

Reconstruction Bias (offset)<br />

Reconstruction Efficiency (area)<br />

20


Response Matrix<br />

<br />

<br />

One matrix for each zenith band and composition model<br />

Includes all effects (atmosphere, detector response, …)<br />

Smoothed Response Matrix<br />

→ Unfolding of primary energy spectra<br />

21


Unfolded Energy Spectra<br />

(<strong>IceTop</strong>-26)<br />

Proton assumption<br />

Iron assumption<br />

preliminary<br />

preliminary<br />

Two component assumption<br />

<br />

<br />

<br />

Isotropic flux condition requires<br />

consistent spectra in all zenith bands<br />

Best agreement in all three zenith<br />

bands for p/Fe two component model<br />

Works also for other reasonable<br />

composition models (e.g. poly-gonato)<br />

preliminary<br />

Not a composition measurement but<br />

a consistency check!<br />

22


Muon Identification <strong>with</strong> <strong>IceTop</strong><br />

Only histogram signal of tanks where the expected signal S exp<br />

is below threshold (< 1 VEM)<br />

(Effective cut on radial distance → only outer stations)<br />

Mostly low energy muons at the outer region of a shower<br />

Muon peak appears at ~1 VEM → Peak area (# muons) sensitive to primary composition<br />

23


Muon Identification <strong>with</strong> <strong>IceTop</strong> (cont.)<br />

S exp<br />

< 0.125 VEM<br />

Iron<br />

Data<br />

Proton<br />

preliminary<br />

<br />

<br />

<br />

Reasonable agreement between data and Monte Carlo<br />

Peak area in data between proton and iron (good, but peak shape seems to be wider)<br />

Ongoing work: Improvement of simulation, Peak area as a function of energy<br />

24


<strong>IceTop</strong>−<strong>IceCube</strong> Coincident Events<br />

<strong>IceTop</strong><br />

(<strong>IceCube</strong>)<br />

<strong>IceCube</strong><br />

courtesy R. Engel<br />

(<strong>IceTop</strong>)<br />

<br />

<br />

Only muons <strong>with</strong> E > 300 GeV reach <strong>IceCube</strong><br />

High energy muons from very first interactions<br />

→ good sensitivity to composition<br />

25


K 70<br />

Muon Estimator<br />

surface<br />

<br />

Cannot directly measure number of muons in a<br />

bundle<br />

X<br />

<br />

Estimation of muon number by fitting an<br />

appropriate light emission/propagation model<br />

d<br />

Detectable charge at point (X,d):<br />

λ eff<br />

: Effective scattering/absorption length → Ice model<br />

Muon estimator:<br />

Center of <strong>IceCube</strong><br />

Distance to bundle axis<br />

26


<strong>Cosmic</strong> <strong>Ray</strong> Composition<br />

Proton fraction (<strong>IceCube</strong>-40)<br />

100 % Proton 100 % Iron<br />

<br />

<br />

<br />

<br />

Data consistent <strong>with</strong> mixed<br />

composition<br />

Tendency to heavier elements<br />

for log(E/GeV) > 6.8<br />

Main systematics:<br />

►<br />

►<br />

►<br />

►<br />

Hadronic interaction model<br />

Ice model<br />

Snow accumulation on tanks<br />

Atmospheric variations<br />

Quantitative evaluation by<br />

►<br />

Neural Network → <br />

►<br />

(2D Unfolding)<br />

27


Neural Network Analysis<br />

<br />

<br />

<br />

Tight and composition independent energy resolution<br />

Interpretation of NN mass output as linear combination of<br />

“pure” elements (p, He/O, Fe) → elemental fractions<br />

Calculation of by:<br />

E = 1-10 PeV<br />

log 10<br />

(E/GeV) = 6.6-6.8<br />

Toy Simulation p+Fe only!<br />

NN Output: Type<br />

28


Summary<br />

90% of <strong>IceCube</strong> are installed and running (completion in 2011).<br />

<br />

<br />

<strong>IceTop</strong> and <strong>IceCube</strong> offer various complementary possibilities for<br />

determining the cosmic ray energy spectrum and composition in<br />

the energy range between 1 PeV and 1 EeV.<br />

Requiring consistent results between all analyses will reduce<br />

systematic uncertainties and can be used for testing hadronic<br />

interaction models.<br />

First results are coming soon ...<br />

29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!