06.01.2015 Views

The UV LED - Villa Olmo

The UV LED - Villa Olmo

The UV LED - Villa Olmo

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

RADIATION HARD <strong>UV</strong> <strong>LED</strong>’S<br />

LIGO Livingston<br />

Sasha Buchman<br />

Ke-Xun Sun<br />

Stanford University<br />

LIGO Hanford<br />

11th ICATPP Conference<br />

<strong>Villa</strong> <strong>Olmo</strong>, 5-9 October, 2009<br />

GP-B, Relativity Mission, Gravity Probe B<br />

Page LISA, 1 Laser Interferometer Space Antenna


Outline<br />

‣ <strong>The</strong> <strong>UV</strong> <strong>LED</strong><br />

‣ Charge management<br />

‣ <strong>The</strong> Relativity Mission, Gravity Probe B GP-B<br />

‣ <strong>The</strong> Laser Interferometer Space Antenna LISA<br />

‣ Laser Interferometer Gravitational-Wave Observatory LIGO<br />

‣ <strong>UV</strong> <strong>LED</strong> Lifetime and Radiation Testing<br />

‣ Lifetime Testing<br />

‣ Radiation Testing<br />

‣ Environmental Testing<br />

Page 2


<strong>UV</strong> <strong>LED</strong><br />

‣ Based on gallium nitride (GaN)<br />

‣ <strong>UV</strong> <strong>LED</strong> in TO39 packaging<br />

‣ Various other packaging<br />

‣ ~255 nm central frequency<br />

‣ 10 nm WHM<br />

<strong>UV</strong> <strong>LED</strong> fiber coupled<br />

<strong>UV</strong> <strong>LED</strong> Performance<br />

<strong>UV</strong> <strong>LED</strong> with ball lens<br />

Page 3


<strong>UV</strong> Charge Management<br />

Page 4<br />

‣ Use of <strong>UV</strong> Sources<br />

‣ Photoelectrons for charge management of test bodies (TB)<br />

‣ Photoemission from TB and its enclosure<br />

‣ Bipolar discharging using photoelectrons and bias<br />

‣ Test Bodies<br />

‣ Insulators (LIGO, VIRGO, GEO600)<br />

‣ Floating conductors (LISA, LPF, GP-B)<br />

‣ Charging Sources<br />

‣ Handling and installation<br />

‣ Pump-down or other gas flow<br />

‣ Separation of dissimilar materials<br />

‣ Cosmic radiation<br />

‣ Patch effects<br />

‣ Vacuum field emission (Field >10 7 V/m)<br />

‣ Charge Magnitude<br />

‣ Typically 1-100 pC/day<br />

‣ Typically


Sources for Charge Management I<br />

‣ Ion Sprayers / Ion Bars<br />

‣ For use in air<br />

‣ Standard for clean rooms and benches<br />

STATIC CLEAN<br />

DC Ionizer DC-ESR-C<br />

Clean room use<br />

SIMCO, Type P-Sh-N<br />

Working distance10-600 mm<br />

Voltage7000 V - AC<br />

‣ <strong>UV</strong> photoelectrons<br />

‣ For use in vacuum<br />

‣ GP-B, LISA, GEO 600<br />

GP-B: Hg <strong>UV</strong><br />

<strong>UV</strong> <strong>LED</strong><br />

Page 5


Sources for Charge Management II<br />

‣ Studies and Proposals<br />

‣For use in vacuum<br />

‣Field emission cathodes 1<br />

‣Ion & Electron guns 2<br />

‣<strong>The</strong>rmal filaments<br />

Ion Gun<br />

IGL-2101 / IGPS-1101<br />

5eV to 2000eV<br />

10eV to 1keV<br />

Spot : 1 - 20mm<br />

Field emission cathodes<br />

Electron Gun<br />

ELG-2/ EGPS-1022<br />

5eV to 2000eV<br />

1nA to 10µA<br />

Spot : 0.5 - 5mm<br />

Page 6<br />

Kimball Physics Inc.<br />

1<br />

GP-B Gyroscope Charge Control Using Field Emission Cathodes, S Buchman T. Quinn, M. Keiser and D. Gill, J. Vac. Sci. Technol. B 11, (1993)<br />

http://scitation.aip.org/getpdf/servlet/GetPDFServletfiletype=pdf&id=JVTBD9000011000002000407000001&idtype=cvips&prog=normal<br />

2<br />

Charge neutralization in vacuum for non-conducting and isolated objects using directed low-energy electron and ion beams S Buchman ,<br />

R.L.Byer, D Gill, N A Robertson, and K-X Sun, Class. Quantum Grav. 25 (2008) 035004 http://stacks.iop.org/0264-9381/25/035004


<strong>UV</strong> Lamps Lifetime<br />

<strong>UV</strong> Lamp A Intensity vs Operating Hours<br />

Normalized Discharge Rates vs Time - LAMP B, -3V Bias<br />

1500<br />

1400<br />

0.0E+00<br />

Intensity Monitor<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

y = 1392.8e -0.0042x<br />

R 2 = 0.72<br />

0 50 100 150 200 250<br />

Operating Hours<br />

Rate (DN/min/IM count)<br />

-1.0E-03<br />

-2.0E-03<br />

-3.0E-03<br />

-4.0E-03<br />

-5.0E-03<br />

G1<br />

G2<br />

G3<br />

G4<br />

-6.0E-03<br />

0 20 40 60 80 100 120 140<br />

time (hours)<br />

<strong>UV</strong> Lamp B Intensity vs Operating Hours<br />

1100<br />

Intensity Monitor<br />

1000<br />

900<br />

800<br />

700<br />

y = 957.68e -0.0043x<br />

R 2 = 0.9776<br />

‣<strong>UV</strong> lamp intensity decay time constant<br />

~ 230 hours<br />

‣Large variability of discharge rates<br />

between gyroscopes<br />

600<br />

500<br />

0 20 40 60 80 100 120 140<br />

Operating Hours<br />

Page 7<br />

‣<strong>The</strong> GP-B Hg <strong>UV</strong> lamps met all<br />

requirements


GP-B Charge Management<br />

‣Charging Sources Ground Test/Analysis SM Results<br />

‣ Levitation < 1V test 200 – 500 mV<br />

‣ He gas spin-up < 1V test Not observed: < 10 mV<br />

‣ Cosmic radiation ~ 0.1 -1 mV/day (GEANT) 0.1 – 1 mV/day<br />

‣ Variations in cosmic radiation charging<br />

‣ Shielding: Decreasing from Gyro #1 to Gyro # 4<br />

‣ Solar flares<br />

‣Rotor charge controlled with <strong>UV</strong> excited electrons<br />

‣ 2 <strong>UV</strong> Hg lamps (254 nm line)<br />

‣ 8 <strong>UV</strong> switches<br />

‣ 2 <strong>UV</strong> fibers per gyroscope<br />

<strong>UV</strong> Lamp A<br />

<strong>UV</strong> Lamp B<br />

1 mV = 1 pC<br />

Schematic of GP-B<br />

<strong>UV</strong> architecture<br />

× 4 gyroscopes<br />

<strong>UV</strong> switch #1A<br />

<strong>UV</strong> switch #1B<br />

Gyro #1<br />

‣Continuous measurement at the 0.1 mV precision<br />

‣Control to 5 mV (meets requirement of 15 mV)<br />

Page 8


GP-B Charge Control: Discharge of G#1<br />

450mV<br />

<strong>UV</strong> Switches<br />

Gyro1 Charge (mV)<br />

70mV/hour<br />

discharge<br />

Lamp A<br />

Lamp B<br />

<strong>UV</strong> Lamp Assembly<br />

100mV<br />

0 mV<br />

Day of year, 2004<br />

Page 9<br />

Charge controlled to < 5 mV<br />

<strong>UV</strong> Electrode


<strong>UV</strong> <strong>LED</strong> Lifetime and Radiation Testing<br />

ILX Precision<br />

Current Source<br />

Computer<br />

Function<br />

Generator<br />

<strong>UV</strong> <strong>LED</strong> Lifetime Testing System<br />

(both vacuum & nitrogen tests)<br />

Modulation<br />

(1 kHz, 10% duty cycle)<br />

GPIB<br />

Amp<br />

Nitrogen/Vacuum<br />

Chambers<br />

<strong>UV</strong> <strong>LED</strong><br />

<strong>UV</strong> Photodiode<br />

Oscilloscope<br />

Signal to<br />

<strong>UV</strong> <strong>LED</strong><br />

Fast <strong>LED</strong> Driver and Photodetection PCB<br />

Signal from<br />

<strong>UV</strong> Photodiode<br />

Driving Signal<br />

Page 10


<strong>UV</strong> <strong>LED</strong> Based AC Charge Management<br />

Output<br />

fast modulated<br />

to generate<br />

electron packets<br />

Modulation<br />

of electrode<br />

phase locked<br />

for steering<br />

electrons<br />

Phase<br />

adjusted for<br />

bipolar charge<br />

management<br />

<strong>UV</strong><br />

e -<br />

e -<br />

<strong>UV</strong><br />

e -<br />

e -<br />

Page 11


Charging and Discharging<br />

of a proof mass potential of +/- 20 mV<br />

Results for AC charge transfer<br />

studies using a <strong>UV</strong> <strong>LED</strong> with<br />

observed power or ~11 µW at a<br />

center wavelength of 257.2 nm<br />

<strong>UV</strong> test facility<br />

Page 12


<strong>UV</strong> <strong>LED</strong> Lifetime in Nitrogen, 1 atm<br />

Spectral Stability After 19,800 Hours<br />

Power Stability After 20,000 Hours<br />

‣ <strong>UV</strong> <strong>LED</strong> emission spectrum<br />

‣ Spectral shift ≤ 2 nm shorter<br />

‣ <strong>UV</strong> <strong>LED</strong> power level<br />

‣ No significant power variation<br />

Page 13<br />

<strong>UV</strong> <strong>LED</strong> lifetime test in Nitrogen: > 28,000 hours (3.2 years)


<strong>UV</strong> <strong>LED</strong> Lifetime in Vacuum, 10 -7 torr<br />

Initial Spectrum<br />

Power Stability After 9,000 Hours<br />

‣ <strong>UV</strong> <strong>LED</strong> emission spectrum<br />

‣ <strong>UV</strong> <strong>LED</strong> power level<br />

‣ No significant power variation<br />

Page 14<br />

<strong>UV</strong> <strong>LED</strong> lifetime test in vacuum: > 17,500 hours (2 years)


Proton Irradiation<br />

63.8 MeV proton irradiation test<br />

‣ Test at UC Davis<br />

‣ Total fluence 2x10 12 proton/cm 2<br />

‣ > 100 years of dose at LISA orbit<br />

‣ <strong>UV</strong> <strong>LED</strong>s maintained light output<br />

‣ Spectral shape unchanged<br />

‣ Power intensity unchanged<br />

Page 15


Page 16


Proton Irradiation Setup at UC Davis<br />

Proton<br />

Accelerator<br />

Ames Chamber<br />

(removed for<br />

high flux proton<br />

irradiation)<br />

Protons<br />

63.8 MeV<br />

Alignment<br />

Aperture<br />

Bread Board<br />

Stanford<br />

Platform<br />

Optics Table<br />

Lab Jack<br />

Page 17


Radiation Qualification Test Setup<br />

Si Photodiode<br />

Protons<br />

63.8 MeV<br />

Beam current<br />

20-15,000 pA<br />

Flat Window<br />

<strong>UV</strong> <strong>LED</strong><br />

Ball Lens<br />

<strong>UV</strong> <strong>LED</strong><br />

SiC Photodiode<br />

Aluminum<br />

Shielding Block<br />

Electronics<br />

Electronics<br />

Shielding Wall (>1 m Concrete)<br />

Page 18<br />

Experimental setup (top view) for<br />

<strong>UV</strong> <strong>LED</strong> proton radiation tests.


<strong>UV</strong> <strong>LED</strong> Spectral Shift Measurements<br />

Before and After Proton Irradiation<br />

‣ <strong>UV</strong> <strong>LED</strong> 63.8 MeV proton irradiation test<br />

‣ Central wavelength 255 nm for both, no shift observed<br />

Page 19


Proton Irradiation Results<br />

<strong>UV</strong> <strong>LED</strong> + SiC Detector<br />

80 pA Run 500 pA Run 15,000 pA Run<br />

Proton Fluence Proton Fluence Proton Fluence<br />

1x10 10 p/cm 2 6.3x10 10 p/cm 2 2x10 12 p/cm 2<br />

Proton energy:<br />

‣ 59.0 MeV for 80 pA<br />

‣ 59.0 MeV for 500 pA<br />

‣ 63.8 MeV for 15,000 pA<br />

Space proton energy:<br />

2~5 MeV<br />

Total fluence: > 100 year<br />

Proton fluence in LISA orbit<br />

Page 20<br />

Reference for proton test of<br />

other <strong>LED</strong> and laser diodes:<br />

A. H. Johnston and T. F.<br />

Miyahira, “Characterization of<br />

Proton Damage in Light-<br />

Emitting Diodes”, IEEE Trans.<br />

Nuclear Science, 47 (6), 1999


Environmental Testing<br />

‣ <strong>UV</strong> <strong>LED</strong> in TO39 packaging tested at Ames Center<br />

‣ Shake: 3g + 7g random vibration in all three axes<br />

‣ Bake: thermal vac chamber -30°C~+ 60°C, including soak<br />

‣ Beam profile, spectra, V-I-P curves staged measurements<br />

‣ Preliminary conclusion: PASS<br />

Fiber coupled <strong>UV</strong> <strong>LED</strong><br />

<strong>UV</strong> <strong>LED</strong> mounted for testing<br />

Page 21


<strong>The</strong> Shake & Bake Setup at NASA Ames<br />

Z-direction shake test platform<br />

Bake Chamber<br />

x, y - direction shake test platform<br />

<strong>UV</strong> <strong>LED</strong><br />

SMA<br />

Packaging<br />

Grating &<br />

Mount<br />

Page 22<br />

<strong>UV</strong> <strong>LED</strong><br />

TOS39<br />

Packaging


Shake & Bake Results<br />

Beam<br />

Profile<br />

Spectrum<br />

V-I-P<br />

Curves<br />

Page 23<br />

Before test After shake After shake & bake


<strong>UV</strong> <strong>LED</strong>’s for LISA & LIGO Charge Control<br />

‣ Long lifetime >28,000 hours to date<br />

‣ Radiation hard<br />

‣ Lower power consumption<br />

‣ Lower mass<br />

‣ AC modulation up to 1 GHz<br />

<strong>UV</strong> <strong>LED</strong> Performance<br />

<strong>UV</strong> <strong>LED</strong><br />

Page 24


NASA- Stanford<br />

Gravity Reference NanoSatellites<br />

1 pm/Hz 1/2 Grating Cavity<br />

Displacement Sensor<br />

Towards ultra high precision gravitation reference<br />

sensors and multi vehicle space interferometry<br />

256 nm Deep <strong>UV</strong> <strong>LED</strong> Roundest sphere and drag<br />

free sensor<br />

1 nrad/Hz 1/2 grating<br />

angular sensor<br />

<strong>The</strong> Program<br />

Frequent launches on ride-along platforms<br />

Standard low cost bus configurations<br />

12 - 24 month project duration<br />

<strong>The</strong> Benefits<br />

New science: Physical, Life, Engineering<br />

Critical technology demonstrations<br />

Fast advance of NASA mission objectives<br />

Train engineers & scientists for the future<br />

STANFORD<br />

NANOSAT<br />

AMES<br />

GENESAT<br />

‣NASA-Ames provides nanosatellite<br />

Platform, payload integration, and mission<br />

operations<br />

Technologies<br />

Roadmap<br />

2007 2008 2009 2010 2011<br />

<strong>UV</strong> Diode<br />

Grating & Laser<br />

Grating Displacement<br />

Grating Interferometer<br />

Other Instruments<br />

Tech. Integration<br />

‣Stanford provides gravitational reference<br />

technologies<br />

Platforms<br />

Caging Mechanism Drag Free Flight<br />

Other Capabilities<br />

Micro/Nanothrusters<br />

Formation Flying<br />

3U Cubesat<br />

6U Cubesat<br />

‣About one mission per year beginning in<br />

2011<br />

‣Estimated total cost per mission is $3-5M<br />

Page 25<br />

Falcon 1<br />

Launch Opportunities<br />

GeneBox ; Flown 16 July 2006<br />

GeneSat-1; Flown 16 Dec 2006<br />

Pharmasat-1; Launch 10 Dec 2007<br />

Minotaur I<br />

Atlas V<br />

Minotaur IV<br />

Microsatellite Sorties<br />

Microsatellite Constellation<br />

2Q 08 1Q 09 3Q 09 1Q 10 4Q 10 2Q 11 4Q 11<br />

Overarching Goal: Provide Rewarding, Focused Objectives<br />

for the Next Generation of Space Scientists and Technologists


<strong>The</strong> First Planned Project<br />

<strong>UV</strong> <strong>LED</strong> Space Demonstration 2009-2011<br />

‣Charge management for high precision GRS<br />

‣Calibration source for <strong>UV</strong> and X-ray telescope<br />

‣Telescope surface and window de-charging<br />

‣Life maintaining system for space flight<br />

Nick Leindecker<br />

Payload Functional Components<br />

GENESAT<br />

Page 26<br />

<strong>UV</strong> <strong>LED</strong> Performance<br />

<strong>UV</strong> <strong>LED</strong>


<strong>UV</strong> <strong>LED</strong> Testing to Date<br />

Lifetime Test<br />

‣Lifetime test in N 2<br />

> 28,000 hours<br />

‣Llifetime test in<br />

vacuum: >17,500<br />

hours<br />

‣<strong>The</strong> spectra in N 2<br />

shifted to shorter<br />

wavelength ~2 nm<br />

Radiation Test<br />

‣63.8 MeV proton irradiation<br />

test<br />

‣Output power maintained<br />

for total fluence 2x10 12<br />

proton/cm 2 (>100 yr LISA )<br />

‣Spectral shape and power<br />

intensity unchanged after<br />

proton irradiation<br />

Shake & Bake<br />

‣Shake test 3g + 7g<br />

random vibration in<br />

all three axes<br />

‣Bake: thermal vac<br />

chamber -30°C~+<br />

60°C, +soak<br />

‣Spectral shape and<br />

power unchanged<br />

1) <strong>LED</strong> deep <strong>UV</strong> source for charge management of gravitational reference sensors, Ke-Xun Sun, B. Allard, S. Buchman, S. Williams, and R. L. Byer<br />

Class. Quantum Grav. 23 (2006) S141–S150 http://stacks.iop.org/0264-9381/23/S141<br />

2) <strong>UV</strong> <strong>LED</strong> Space Qualification, Ke-Xun Sun, N. Leindecker, S. Higuchi, S. Buchman, R. L. Byer, J. Goebel, M. McKelvey, R. McMurray, Draft in refereeing<br />

Page 27

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!