02.11.2014 Views

Quantum Hall Effect in Graphene

Quantum Hall Effect in Graphene

Quantum Hall Effect in Graphene

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Quantum</strong> <strong>Hall</strong> <strong>Effect</strong> In<br />

<strong>Graphene</strong><br />

<strong>Graphene</strong> Monolayer<br />

<strong>Graphene</strong> Bilayer<br />

May 8, 2007<br />

Mohammad Reza Ramezanali<br />

Sharif University Of Technology


Electronic Structure<br />

of <strong>Graphene</strong>


Roughness of undoped <strong>Graphene</strong><br />

N. Abedpour, M. Neek-Amal, Reza Asgari, F. Shahbazi, N. Nafari and<br />

M. Reza Rahimi Tabar, Cond-mat 0705.0103v1 2007<br />

The correlation function of height fluctuations depends upon<br />

temperature with characteristic length scale of ≈ 90 A ° (at room<br />

temperature). They showed that the correlation function of the<br />

<strong>in</strong>duced gauge field has a short-range nature with correlation<br />

length of about<br />

≃2-3A°.


Chiral Fermions <strong>in</strong> <strong>Graphene</strong>


Chiral Tunnel<strong>in</strong>g and The<br />

Kle<strong>in</strong> Paradox


The Kle<strong>in</strong> Paradox<br />

Tunnel<strong>in</strong>g <strong>in</strong> <strong>Graphene</strong> (Top panel) and <strong>in</strong> conventional semiconductor<br />

(lower panel).


The Kle<strong>in</strong> Paradox<br />

Transmission probability through a 100-nm-wide barrier as a<br />

Function of <strong>in</strong>cident angle for s<strong>in</strong>gle- (a) and bi-layer (b) <strong>Graphene</strong>.


Conductivity “Without”<br />

Charge Carriers


M<strong>in</strong>imum <strong>Quantum</strong> Conductivity<br />

Gusyn<strong>in</strong>, PRL 2005<br />

Ziegler, PRB 2005<br />

Peres, PRB 2006<br />

Katsnelson EPJB 2006<br />

Tworzydlo, PRL 2006<br />

.....<br />

Falkovsky Cond-mat2006<br />

Cserti Cond-mat2006<br />

Ziegler, PRL 2006<br />

Ziegler, PRL 2007


Index Theorem and Chiral<br />

<strong>Quantum</strong> <strong>Hall</strong> <strong>Effect</strong>


Quantization Of Dirac Fermion


Quantization Of Dirac Fermions<br />

The prefactor 4 reflects the two-fold sp<strong>in</strong> and two-fold valley<br />

degeneracy <strong>in</strong> the <strong>Graphene</strong> band structure, while the “shift” of 1/2<br />

orig<strong>in</strong>ates from the Berry phase due to the pseudosp<strong>in</strong> (or valley)<br />

precession when a massless (and thus chiral) Dirac particle<br />

exercises cyclotron motion.


Berry Phase <strong>in</strong> <strong>Graphene</strong><br />

• If a quasiparticle encircles a closed contour <strong>in</strong><br />

the momentum space, a phase shift known as Berry’s<br />

phase is ga<strong>in</strong>ed by the quasiparticle’s wavefunction.<br />

• Berry’s phase can be viewed as aris<strong>in</strong>g due to rotation of<br />

pseudosp<strong>in</strong>, when a quasiparticle repetitively moves<br />

between different carbon sublattices (A and B for 1L<br />

graphene, and A1 and B2 for 2L graphene).


Spontaneous Symmetry Break<strong>in</strong>g<br />

A. Spontaneous break<strong>in</strong>g of SU(4) symmetry and<br />

<strong>Quantum</strong> <strong>Hall</strong> Ferromagnetic<br />

B. Spontaneous mass generation and symmetry<br />

break<strong>in</strong>g<br />

C. Electron-phonon <strong>in</strong>teraction and spontaneously<br />

broken <strong>in</strong>version symmetry<br />

D. Edge states and Fractional <strong>Quantum</strong> <strong>Hall</strong> States


BILAYER GRAPHENE


Landau levels and <strong>Hall</strong> conductivity


CONCLUSIONS<br />

“Relativistic” Condensed<br />

Matter Physics


...Thanks...

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!