03.11.2014 Views

Lecture 18 Transistor Amplifiers (I) Common-Source Amplifier

Lecture 18 Transistor Amplifiers (I) Common-Source Amplifier

Lecture 18 Transistor Amplifiers (I) Common-Source Amplifier

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Lecture</strong> <strong>18</strong><br />

Amplificateurs à <strong>Transistor</strong> (I)<br />

<strong>Common</strong>-<strong>Source</strong> <strong>Amplifier</strong><br />

• <strong>Amplifier</strong> fundamentals<br />

Outline<br />

• <strong>Common</strong>-source amplifier<br />

• <strong>Common</strong>-source amplifier with current-source<br />

supply<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 1


<strong>Amplifier</strong> Fundamentals<br />

• <strong>Source</strong> resistance R S is associated only with small<br />

signal sources<br />

• Choose I D = I SUP ---> DC output current<br />

– I OUT<br />

= 0<br />

– V OUT<br />

= 0<br />

Input<br />

sources<br />

Voltage Input<br />

Intrinsic<br />

<strong>Amplifier</strong><br />

V +<br />

Load<br />

v s<br />

V BIAS<br />

+<br />

−<br />

+<br />

−<br />

R S<br />

v IN<br />

= V BIAS<br />

+ v s<br />

Current Input i IN<br />

= I BIAS<br />

+ i s<br />

i s<br />

R S<br />

I BIAS<br />

Input<br />

I SUP<br />

Supply<br />

Current<br />

I SUP<br />

Active<br />

Device<br />

i D<br />

= f(input)<br />

i OUT<br />

= i d<br />

i D<br />

+<br />

v OUT<br />

−<br />

R L<br />

V −<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 2


2. <strong>Common</strong>-<strong>Source</strong> <strong>Amplifier</strong>:<br />

Consider the following circuit:<br />

V + =V DD<br />

signal source<br />

R S<br />

v s<br />

V BIAS<br />

R D<br />

V - =V SS<br />

i R<br />

i D<br />

+<br />

v OUT<br />

-<br />

signal<br />

load<br />

R L<br />

• Consider intrinsic voltage amplifier - no loading<br />

•R S = 0<br />

•R L ---> ∞<br />

•V GS = V BIAS -V SS<br />

• V BIAS , R D and W/L of MOSFET selected to bias<br />

transistor in saturation and obtain desired output<br />

bias point (i.e. V OUT = 0).<br />

Watch notation: v OUT (t)=V OUT +v out (t)<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 3


Load line view of amplifier:<br />

load line<br />

I R =I D<br />

V SS<br />

V DD -V SS<br />

R D<br />

V BIAS -V ss = V DD -V SS<br />

V GG -V SS =V DD -V SS<br />

V BIAS -V ss<br />

V GG -V SS<br />

0<br />

V DD<br />

V BIAS -V ss = V T<br />

V GG -V SS =V T<br />

V OUT<br />

Transfer characteristics of amplifier:<br />

V OUT<br />

V DD<br />

Want:<br />

V SS<br />

0 V T<br />

V DD -V SS<br />

• Bias point calculation;<br />

• Limits to signal swing<br />

• Small-signal gain;<br />

V GG -V SS<br />

V BIAS -V ss<br />

• Frequency response [in a few days]<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 4


Bias point: choice of V BIAS , W/L, and R D to keep<br />

transistor in saturation and to get proper quiescent V OUT .<br />

Assume MOSFET is in saturation:<br />

I D = W 2L µ nC ox ( V BIAS − V SS − V T ) 2<br />

If we select V OUT =0:<br />

I D = I R = W 2 L µ nC ox<br />

Then:<br />

I R = V DD − V OUT<br />

R D<br />

( V BIAS − V SS − V T ) 2 = V DD<br />

R D<br />

V BIAS =<br />

2I D<br />

W<br />

+ V SS + V T<br />

L µ nC ox<br />

Equation that allows us to compute needed V BIAS given<br />

R D and W/L.<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 5


Signal swing:<br />

V DD<br />

R D<br />

signal source<br />

+<br />

R S<br />

v OUT<br />

v s<br />

V BIAS<br />

-<br />

V SS<br />

• Upswing: limited by MOSFET going into cut-off.<br />

v out,max = V DD<br />

• Downswing: limited by MOSFET leaving saturation.<br />

or<br />

V DS,sat = V GS − V T =<br />

2I D<br />

W<br />

L µ nC ox<br />

v out ,min − V SS = V BIAS − V SS − V T =<br />

Then:<br />

v out,min = V BIAS − V T<br />

2I D<br />

W<br />

L µ nC ox<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 6


Generic view of the effect of loading on<br />

small-signal operation<br />

Two-port network view of small-signal equivalent<br />

circuit model of a voltage amplifier:<br />

R in is input resistance<br />

R out is output resistance<br />

A vo is unloaded voltage gain<br />

R s<br />

R out<br />

v s<br />

+<br />

-<br />

+<br />

+<br />

+<br />

v in R in Avo v in v out<br />

-<br />

-<br />

-<br />

R L<br />

input<br />

loading<br />

unloaded circuit<br />

output<br />

loading<br />

Voltage divider at input:<br />

Voltage divider at output:<br />

v in = R in<br />

v out = R L<br />

v s<br />

R in + R s<br />

A vo v in<br />

R out + R L<br />

Loaded voltage gain:<br />

v out<br />

v s<br />

=<br />

R in<br />

R in + R S<br />

A vo<br />

R L<br />

R L + R out<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 7


Small-signal voltage gain A vo : draw small-signal<br />

equivalent circuit model: Remove R L and R S<br />

D<br />

G<br />

+ +<br />

+<br />

v t v gs gm v gs<br />

v out<br />

- -<br />

S<br />

r o<br />

R D<br />

-<br />

+<br />

v t<br />

+<br />

-<br />

gm v t (r o //R D )<br />

v out = −g m v t ( r o // R D )<br />

Then unloaded voltage gain:<br />

A vo = v out<br />

v t<br />

=−g m ( r o // R D )<br />

v out<br />

-<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 8


Input Resistance<br />

• Calculation of input resistance, R in :<br />

– Load amplifier with R L<br />

– Apply test voltage (or current) at input, measure test<br />

current (or voltage).<br />

For common-source amplifier:<br />

i t<br />

+<br />

+<br />

v t v gs<br />

g m v gs (r o //R D ) R L<br />

-<br />

-<br />

i t = 0 ⇒ R in = v t<br />

i t<br />

=∞<br />

No effect of loading at input.<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 9


Output Resistance<br />

• Calculation of output resistance, R out :<br />

– Load amplifier with R S<br />

– Apply test voltage (or current) at output, measure test<br />

current (or voltage).<br />

– Set input source equal zero<br />

For common-source amplifier:<br />

i t<br />

R S<br />

+<br />

v gs<br />

-<br />

g m v gs (r o //R D )<br />

+<br />

vt<br />

-<br />

v gs = 0 ⇒ g m v gs = 0 ⇒ v t = i t ( r o // R D )<br />

R out = v t<br />

i t<br />

= r o // R D<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 10


Two-port network view of common-source amplifier<br />

Voltage <strong>Amplifier</strong><br />

R s<br />

R out<br />

v s<br />

+<br />

-<br />

+<br />

+<br />

+<br />

v in R in Avo v in v out<br />

-<br />

-<br />

-<br />

R L<br />

input<br />

loading<br />

Intrinsic circuit<br />

output<br />

loading<br />

v out<br />

v s<br />

v out<br />

v s<br />

=<br />

R in<br />

R in + R S<br />

A vo<br />

( )<br />

=−g m r o // R D<br />

R L<br />

R L<br />

R L + R out<br />

( )<br />

R L + r o // R D<br />

=−g m r o // R D // R L<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 11


Current <strong>Source</strong> Supply<br />

I—V characteristics of current source:<br />

i SUP<br />

+<br />

v SUP<br />

i SUP<br />

I SUP<br />

1<br />

r oc<br />

_<br />

v SUP<br />

Equivalent circuit models :<br />

i SUP<br />

+<br />

v SUP<br />

I SUP<br />

roc<br />

r oc<br />

_<br />

large-signal model<br />

small-signal model<br />

• i SUP = 0 for v SUP ≤ 0<br />

• i SUP = I SUP + v SUP / r oc for v SUP > 0<br />

• High small-signal resistance r oc.<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 12


3. <strong>Common</strong>-source amplifier with currentsource<br />

supply<br />

V DD<br />

i SUP<br />

signal source<br />

R S<br />

i D<br />

+<br />

signal<br />

load<br />

v s<br />

v OUT<br />

R L<br />

V BIAS<br />

-<br />

Loadline View<br />

i SUP =I D<br />

load line<br />

V SS<br />

V BIAS -V SS =V DD -V SS<br />

I SUP<br />

V SS<br />

V BIAS -V SS<br />

0<br />

V DD<br />

V BIAS -V SS =V T<br />

V OUT<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 13


Use PMOS for current source supply<br />

V DD<br />

v s<br />

V BIAS<br />

V B<br />

signal source<br />

R S<br />

V SS<br />

i D<br />

i SUP<br />

v OUT<br />

Bias point: Assume both transistors in saturation<br />

V OUT = 0<br />

I SUP =−I Dp =<br />

I SUP = I Dn =<br />

⎛<br />

⎜<br />

⎝<br />

⎛<br />

⎜<br />

⎝<br />

W ⎞<br />

⎟<br />

2L⎠<br />

W ⎞<br />

⎟<br />

2L⎠<br />

µ p C ox ( V DD − V B + V Tp ) 2<br />

p<br />

µ n C ox ( V BIAS − V SS − V Tn ) 2<br />

n<br />

V BIAS =<br />

⎛<br />

⎜<br />

⎝<br />

W<br />

L<br />

2I SUP<br />

+ V<br />

⎞<br />

SS + V T<br />

⎟ µ<br />

⎠ n C ox<br />

n<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 14


Signal swing:<br />

V DD<br />

V B<br />

i SUP<br />

signal source<br />

R S i D<br />

v<br />

v OUT<br />

s<br />

V BIAS<br />

V SS<br />

• Upswing: limited by PMOS leaving saturation.<br />

V SD,sat = V SG + V Tp =<br />

⎛<br />

⎜<br />

⎝<br />

W<br />

L<br />

2I SUP<br />

⎞<br />

⎟<br />

⎠<br />

µ p C ox<br />

p<br />

V DD − v out,max = V DD − V B + V Tp<br />

v out,max = V B − V Tp<br />

• Downswing: limited by NMOS leaving saturation.<br />

• Same result as with resistive supply current.<br />

v out,min = V BIAS − V T<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 15


3. <strong>Common</strong>-source amplifier with currentsource<br />

supply (contd.)<br />

Current source characterized by high output resistance:<br />

r oc . Significantly higher than amplifier with resistive supply.<br />

p-channel MOSFET: r oc = 1/λI Dp<br />

V DD<br />

V B<br />

i SUP<br />

signal source<br />

R S i D<br />

v s<br />

V BIAS<br />

V SS<br />

• Voltage gain: A vo = -g m (r o //r oc ).<br />

v OUT<br />

• Input resistance :R in = ∞<br />

• Output resistance: R out = r o //r oc .<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> 16


Relationship between circuit figures of merit and<br />

device parameters<br />

Remember:<br />

W<br />

g m = 2I D<br />

L µ nC ox<br />

1<br />

r o ≈ ∝ L<br />

λ n I D I D<br />

Then:<br />

Device*<br />

Parameters<br />

Circuit Parameters<br />

|A vo | R in R out<br />

g m (r o //r oc ) ∝ ro //r oc<br />

I SUP ↑ ↓ - ↓<br />

W ↑ ↑ - -<br />

µ n C ox ↑` ↑ - -<br />

L ↑ ↑ - ↑<br />

* adjustments are made to V BIAS so that none of<br />

the other parameters change<br />

CS amplifier with current source supply is a good<br />

voltage amplifier (R in high and |A vo | high), but R out high<br />

too ⇒ voltage gain degraded if R L


What did we learn today?<br />

Summary of Key Concepts<br />

for CS amplifier<br />

• Bias Calculations<br />

• Signal Swing<br />

• Small Signal Circuit Parameters<br />

– Voltage Gain - A VO<br />

– Transconductance - G m<br />

– Input Resistance - R in<br />

– Output Resistance - R out<br />

• Relationship between small signal circuit and<br />

device parameters<br />

6.012 Spring 2004 <strong>Lecture</strong> <strong>18</strong> <strong>18</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!