03.11.2014 Views

Davis & Harrison & Kim.Jacobs.Wastewater Treatment for Enhanced ...

Davis & Harrison & Kim.Jacobs.Wastewater Treatment for Enhanced ...

Davis & Harrison & Kim.Jacobs.Wastewater Treatment for Enhanced ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Wastewater</strong> <strong>Treatment</strong> <strong>for</strong><br />

<strong>Enhanced</strong> Nutrient Removal<br />

John <strong>Davis</strong>, P.E.<br />

Karen <strong>Harrison</strong>, P.E.<br />

Nora <strong>Kim</strong>, P.E.<br />

<strong>Jacobs</strong> Engineering Group<br />

August 9 th , 2011


Outline<br />

• What is enhanced nutrient removal (ENR)?<br />

• Why is it required?<br />

• Where has it been required?<br />

• How is it accomplished?<br />

• Issues, lessons, and observations <strong>for</strong> two key<br />

processes:<br />

– Three-stage treatment<br />

– Simultaneous nitrification/denitrification (SND)


What is ENR?<br />

<strong>Treatment</strong> Level<br />

Typical Effluent<br />

Nutrient Levels<br />

Typical Process<br />

Nutrient<br />

Removal<br />

<strong>Enhanced</strong><br />

Nutrient<br />

Removal<br />

Wow!<br />

You’re Serious?<br />

Nutrient Removal<br />

8 mg/L TN<br />

and/or<br />

1 mg/L TP<br />

3 mg/L TN<br />

and/or<br />

0.1 mg/L TP<br />

1 mg/L TN<br />

and/or<br />


Why is ENR Required?<br />

Nitrogen and phosphorus<br />

waste loads in streams,<br />

lakes, and coastal estuaries<br />

can cause algae<br />

proliferation,<br />

eutrophication, & low<br />

oxygen levels.


Where has ENR been Required?<br />

• For Nitrogen<br />

– Typically coastal regions<br />

– Groundwater recharge<br />

– Chesapeake Bay<br />

– Florida<br />

– Long Island Sound<br />

• For Phosphorus<br />

– Typically upstream of freshwater lakes<br />

– Throughout U.S.


How is ENR accomplished?<br />

Sample of Low Nitrogen Plants<br />

<strong>Treatment</strong> Plant Process Supplement<br />

Carbon<br />

95 th %tile<br />

TN, mg/L<br />

Average<br />

TN, mg/L<br />

Truckee Meadows WRF, NV Fixed Film Nit/Denit & Filters Yes 2.5 1.7<br />

River Oaks WWTP, FL Separate Sludge & Filters Yes 2.3 1.5<br />

Howard F. Curran WWTP, FL Nitrification & Denit Filters Yes 3.0 NA<br />

WSSC Western Branch WWTP, MD Separate Sludge & Filters Yes 2.2 1.5<br />

Scituate WWTP, MA Nitrification & Denit Filters Yes 3.8 2.4<br />

Eastern WRF, FL Bardenpho & Filters No 6.7 4.3 (Median)<br />

WSSC Parkway WWTP, MD Bardenpho Yes 5.1 3.1<br />

Fiesta Village, FL Simult Nit/Denit & Denit Filters Yes 2.2 1.1<br />

Kalaska CWP, MI Ox Ditch Bardenpho No 2.8 2.2<br />

Iron Bridge WRF, FL Ox Ditch Bardenpho & Filters No 2.4 1.9<br />

WSSC Piscataway, WWTP, MD Step Feed & Filters No 7.2 3.1<br />

Ten Bardenpho Plants, FL Bardenpho & Filters Yes 3.5 2.4<br />

Five 3-Stage with Denite Filters, FL 3-Stage & Denit Filters Yes 3.0 2.1<br />

Source: WERF/WEF Real World LOT Nutrient Removal: Achievable Limits and Statistical Reliability Workshop,<br />

October 11, 2009


How is ENR accomplished <strong>for</strong><br />

Low Nitrogen?<br />

• Typical Processes<br />

– Separate Sludge<br />

– Attached-Growth Denitrification<br />

– Bardenpho<br />

– Simultaneous Nitrification/Denitrification (SND)<br />

PLUS<br />

• Chemical Addition<br />

– Methanol, Acetic Acid, Other Carbon Source


How is Nitrogen Removal<br />

Accomplished?<br />

A Basin Meeting Three Main Requirements<br />

1. Nitrified Influent<br />

2. Anoxic Conditions<br />

3. Carbon Source


Separate Sludge<br />

Supplemental<br />

Carbon<br />

Nitrification<br />

Stage<br />

1 st Stage<br />

Clarifiers<br />

De-Nitrification<br />

Stage<br />

2 nd Stage<br />

Clarifiers<br />

• Common in earliest low TN applications (70s and 80s)<br />

• Effective<br />

• High cost <strong>for</strong> capital and chemical


Attached-Growth Denitrification<br />

Supplemental<br />

Carbon<br />

Anaerobic<br />

Stage<br />

Anoxic<br />

Stage<br />

Aerobic<br />

Stage<br />

Clarifiers<br />

Denitrifying<br />

Filters<br />

• Combined with upstream activated sludge<br />

• TN removal with upstream nitrification<br />

• TN polishing with upstream 3-stage process


Bardenpho<br />

Supplemental<br />

Carbon<br />

Anaerobic<br />

Stage<br />

1 st Anoxic<br />

Stage<br />

1 st Aerobic<br />

Stage<br />

2 nd Anoxic<br />

Stage<br />

2 nd Aerobic<br />

Stage<br />

Clarifiers<br />

Filters<br />

• Responds well to flow and load changes<br />

• Limits supplemental carbon need<br />

• Has become very common <strong>for</strong> low TN applications


Simultaneous<br />

Nitrification/Denitrification (SND)<br />

• More of an operational method than a<br />

process configuration<br />

• DO = 0.3 to 0.7 mg/L Nitrify & Denitrify<br />

• Used in many process configurations<br />

• Key is maintaining DO in low, narrow range<br />

– DO too high exceed on TN<br />

– DO too low exceed on NH 3 -N<br />

• Supplemental carbon may not be needed


SND Mechanism<br />

O 2<br />

Aerobic<br />

CO 2<br />

Anoxic<br />

N 2<br />

Ammonia<br />

NO 2<br />

NO 3<br />

BOD


How is ENR accomplished?<br />

Sample of Low Phosphorus Plants<br />

<strong>Treatment</strong> Plant BioP ChemP 95 th %tile<br />

TP, mg/L<br />

Average TP,<br />

mg/L<br />

Clark County, NV Yes Pre & Post 0.153 0.086<br />

Rocky Creek, OR Yes Pre & Post 0.151 0.067<br />

Blue Plains, DC Yes Pre & Co 0.161 0.067<br />

Iowa Hill WRF, CO Yes Post 0.031 0.013<br />

F. Wayne Hill, Gwinnett County, GA Yes Post 0.090 0.044<br />

Cauley Creek, Fulton County, GA Yes Co (MBR) 0.116 0.077<br />

Alexandia Sanitation Authority WWTP, VA Some Co & Post 0.101 0.046<br />

Pinery WWTP, CO Yes Post 0.042 0.023<br />

WSSC Piscataway, WWTP, MD Some Post 0.178 0.087<br />

Kalispell AWWTP, MT Yes No 0.168 0.110<br />

Kelowna WWTF, BC Yes Co 0.217 0.160<br />

Source: WERF/WEF Real World LOT Nutrient Removal: Achievable Limits and Statistical Reliability Workshop,<br />

October 11, 2009


How is ENR accomplished <strong>for</strong><br />

• Typical Processes<br />

Low Phosphorus?<br />

– Post-precipitation with tertiary clarifiers followed<br />

by filters<br />

– Co-precipitation in a Membrane Bioreactor (MBR)<br />

– Upstream biological phosphorus removal is<br />

warranted to save on chemical costs


Post-Precipitation<br />

Alum or<br />

Ferric<br />

Alum or<br />

Ferric<br />

Anaerobic<br />

Stage<br />

Anoxic<br />

Stage<br />

Aerobic<br />

Stage<br />

Clarifiers<br />

Chemical<br />

Clarifiers<br />

Chemical<br />

Filters<br />

• Need two sets of clarifiers plus filters<br />

• Multiple chemical feed points are common<br />

• Georgia has many examples on Lake Lanier, Chattahoochee


Co-Precipitation with MBR<br />

Alum or<br />

Ferric<br />

Anaerobic<br />

Stage<br />

Anoxic<br />

Stage<br />

Aerobic<br />

Stage<br />

RAS DeOx<br />

Tank<br />

Membrane<br />

Tank<br />

• Membranes replace two sets of clarifiers, and media filters<br />

• Air Scour DO can interfere with anaerobic/anoxic treatment<br />

• Georgia has many examples on Lake Lanier, Chattahoochee


Minimizing Chemical Costs<br />

As ENR standards become more common two<br />

process approaches will standout as keys to<br />

limiting chemical costs:<br />

– 3-Stage <strong>Treatment</strong><br />

• Example: Mauldin Road WWTP<br />

– Simultaneous Nitrification/Denitrification<br />

• Example: Yulee/Nassau Regional WRF


3-Stage <strong>Treatment</strong> – Mauldin Rd WWTP<br />

Anaerobic<br />

Stage<br />

Anoxic<br />

Stage<br />

Aerobic<br />

Stage<br />

Clarifiers<br />

Filters<br />

• Removes N and P to degree possible w/o chemicals<br />

• Can achieve low TN if extended into Bardenpho or followed<br />

by denitrifying filters<br />

• Can achieve < 1 mg/L TP w/o chemicals


TN, mg/L<br />

TP, mg/L<br />

3-Stage Process - SRT Sweet Spot<br />

30<br />

25<br />

20<br />

5<br />

4.5<br />

4<br />

3.5<br />

3<br />

15<br />

10<br />

5<br />

0<br />

0 10 20 30 40 50 60<br />

Sludge Retention Time (SRT), days<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

TN Results<br />

TP Results


3-Stage Process – Other Observations<br />

• Phosphorus accumulating organisms (PAOs) and<br />

denitrifying organisms compete <strong>for</strong> carbon<br />

• Primary clarifiers will be counter-productive<br />

• Biologically fixed phosphorus must be removed with<br />

sludge<br />

• Long SRTs due to low plant loading will interfere with<br />

phosphorus removal<br />

• If denitrification is carbon-limited, more nitrified<br />

recycle won’t help TN removal.<br />

• DO and NO 3 in RAS can interfere with<br />

PAOs/phosphorus removal


SND - Yulee/Nassau Regional WRF<br />

Recycle<br />

Influent<br />

Flow<br />

Discharge<br />

Screening and Flow<br />

Split<br />

Anoxic Aerobic Anoxic MBR<br />

UV<br />

Disinfection


Effluent Limits<br />

Parameter<br />

cBOD 5<br />

Total Suspended Solids (TSS)<br />

Ammonia-Nitrogen (NH 3 -N)<br />

Total Nitrogen (TN)<br />

Total Phosphorus (TP)<br />

Limit<br />

5 mg/L<br />

5 mg/L<br />

1 mg/L<br />

3 mg/L<br />

1 mg/L


Process Highlights<br />

• SymBio® Process<br />

– Simultaneous nitrification-denitrification (SND)<br />

– Operates at low dissolved oxygen (0.2 – 0.5 mg/L)<br />

• Alum feed <strong>for</strong> P removal<br />

• Kubota flat plate membranes


Process Modeling<br />

• BioWin model used as operational tool<br />

• BioWin switching functions require<br />

adjustment<br />

• Jimenez (2010) research on SND switching<br />

functions


Concentration, mg/L<br />

Original Operation<br />

8<br />

7<br />

Nov 2006 to Jan 2007 Effluent Data<br />

Effluent TN<br />

Effluent TP<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0


Recommended Modifications<br />

• Added new aeration blower with VFD – 400 to<br />

1300 scfm capacity<br />

• Aeration tank minimum air reduced from 600<br />

scfm to 400 scfm<br />

• Operation of fewer trains at low loads<br />

• Consulted membrane vendor and reduced<br />

minimum scour air from 1400 to 700 scfm per<br />

membrane tank


Concentration, mg/L<br />

Modified Operation<br />

2010 Effluent Data<br />

7<br />

6<br />

Effluent TN<br />

Effluent TP<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0


Questions?<br />

john.davis@jacobs.com

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!