03.11.2014 Views

Birational invariants, purity and the Gersten conjecture Lectures at ...

Birational invariants, purity and the Gersten conjecture Lectures at ...

Birational invariants, purity and the Gersten conjecture Lectures at ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

22<br />

separable closure of K <strong>and</strong> let K nr ⊂ K be <strong>the</strong> maximal unramified extension of K inside<br />

K. Let G = Gal(K/K) be <strong>the</strong> absolute Galois group, I = Gal(K/K nr ) be <strong>the</strong> inertia<br />

group <strong>and</strong> G = Gal(K nr /K) = Gal(κ/κ). We <strong>the</strong>n have <strong>the</strong> Hochschild-Serre spectral<br />

sequence for Galois cohomology<br />

E pq<br />

2 = Hp (G, H q (I, µ ⊗j<br />

n )) =⇒ H p+q (G, µ ⊗j<br />

n ).<br />

Let p be <strong>the</strong> characteristic of κ. Now we have an exact sequence<br />

1 −→ I p −→ I −→ ∏ l≠p<br />

Z l (1) −→ 1<br />

where Z l (1) is <strong>the</strong> projective limit over m of <strong>the</strong> G-modules µ l<br />

m = µ l m(K) = µ l m(K nr )<br />

(Here I p = 0 if p = 0). For this, see [Se68]. Also, we have H q (I, µ ⊗j<br />

n ) = 0 for q > 2, <strong>and</strong><br />

H 1 (I, µ ⊗j<br />

n ) = µ ⊗j−1<br />

n , as a G-module. The above spectral sequence thus gives rise to a<br />

long exact sequence<br />

. . . → H i (G, µ ⊗j<br />

n<br />

hence in particular to a map<br />

) → H i (G, µ ⊗j<br />

n<br />

) → H i−1 (G, µ n<br />

⊗j−1 ) → H i+1 (G, µ ⊗j<br />

n ) → . . .<br />

∂ : H i (K, µ ⊗j<br />

n ) −→ H i−1 (κ, µ n ⊗(j−1) ) .<br />

<strong>and</strong> one may check th<strong>at</strong> this map agrees (up to a sign) with <strong>the</strong> map ∂ A in (3.6) .<br />

Equipped with <strong>the</strong> previous description of <strong>the</strong> map ∂ A , one proves :<br />

PROPOSITION 3.3.1. — Let A ⊂ B be an inclusion of discrete valu<strong>at</strong>ion rings with<br />

associ<strong>at</strong>ed inclusion K ⊂ L of <strong>the</strong>ir fields of fractions (which need not be a finite extension<br />

of fields). Let κ A <strong>and</strong> κ B be <strong>the</strong>ir respective residue fields. Let n be an integer invertible in<br />

A, hence in B, <strong>and</strong> let e = e B/A be <strong>the</strong> ramific<strong>at</strong>ion index of B over A, i.e. <strong>the</strong> valu<strong>at</strong>ion<br />

in B of a uniformizing parameter of A. The following diagram commutes :<br />

H i (K, µ ⊗j<br />

n )<br />

↓ Res K,L<br />

H i (L, µ ⊗j<br />

n )<br />

∂ A<br />

−−−−−→<br />

∂ B<br />

−−−−−→<br />

H i−1 (κ A , µ ⊗j−1<br />

n )<br />

↓ ×e B/A .Res κA ,κ B<br />

H i−1 (κ B , µ ⊗j−1<br />

n ).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!