04.11.2014 Views

Teorema esantionarii Esantionarea ideala

Teorema esantionarii Esantionarea ideala

Teorema esantionarii Esantionarea ideala

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Esantionarea</strong> semnalelor<br />

Discretizarea variatiei in timp a semnalului.<br />

<strong>Teorema</strong> <strong>esantionarii</strong><br />

<strong>Esantionarea</strong> <strong>ideala</strong><br />

1 ⎡ ⎛ Δ⎞ ⎛ Δ⎞⎤<br />

uΔ<br />

() t = σ ⎜t+ ⎟−σ⎜t−<br />

⎟<br />

Δ<br />

⎢<br />

2 2<br />

⎥<br />

⎣ ⎝ ⎠ ⎝ ⎠⎦<br />

xtu t x u t<br />

() Δ() ≅ ( 0) Δ()<br />

() ( − ) ≅ ( ) ( − )<br />

xtu t kT xkT u t kT<br />

Δ<br />

∞<br />

() ∑ Δ( − e) ≅ ∑ ( e) Δ( − e)<br />

k=−∞<br />

() =δ()<br />

e e Δ e<br />

x t u t kT x kT u t kT<br />

lim u t t<br />

Δ<br />

Δ→0<br />

∞<br />

∑<br />

( − e) = ∑ δ( − e) =δT<br />

()<br />

Δ<br />

Δ→ 0<br />

k =−∞ k =−∞<br />

∞<br />

;<br />

xt $ () = xt () δ T () t = ∑ xkT ( e) δ( t−kTe)<br />

e<br />

k=−∞<br />

k=−∞<br />

lim u t kT t kT t<br />

∞<br />

∞<br />

e<br />

1


x $ () t = x() t δ () t = x( kT ) δ( t−kT<br />

)<br />

∞<br />

∑<br />

Te<br />

e e<br />

k=−∞<br />

x(t)<br />

x(t)= x(t)δ Te (t)<br />

δ Te (t)<br />

δ<br />

Te<br />

^<br />

X<br />

Spectrul semnalului esantionat<br />

ideal<br />

() t<br />

1<br />

{ } = X ( ω)<br />

( ω) = F x() t δ () t<br />

1<br />

=<br />

T<br />

2π<br />

↔<br />

T<br />

∞<br />

∑<br />

k =−∞<br />

e<br />

X<br />

∞<br />

∑<br />

k =−∞<br />

e<br />

⎛ 2π<br />

⎞ 2π<br />

δ⎜ω − k ⎟ ; = ω<br />

⎝ Te<br />

⎠ Te<br />

Te<br />

⎛<br />

2π<br />

⎞<br />

Te<br />

⎠<br />

∞<br />

( ω) ∗δ⎜ω − k ⎟ = ∑<br />

⎝<br />

2π<br />

2π<br />

∗<br />

T<br />

1<br />

T<br />

k =−∞<br />

e<br />

e<br />

∞<br />

∑<br />

k =−∞<br />

e<br />

⎛ 2π<br />

⎞<br />

δ⎜ω − k ⎟ =<br />

⎝ Te<br />

⎠<br />

⎛ 2π<br />

X ⎜ω − k<br />

⎝ Te<br />

⎞<br />

⎟<br />

⎠<br />

2


^<br />

X<br />

1<br />

T<br />

( ω) = ∑ ∞<br />

k −∞<br />

e<br />

⎛<br />

⎜<br />

⎝<br />

2π<br />

⎞<br />

Te<br />

⎠<br />

X ω − k ⎟<br />

=<br />

Eroarea de aliere.<br />

<strong>Teorema</strong> <strong>esantionarii</strong> semnalelor<br />

de banda limitata<br />

ω<br />

ω<br />

e<br />

M<br />

r<br />

> 2ω<br />

≤ ω<br />

c<br />

M<br />

( 0) e<br />

H = T<br />

≤ ω<br />

e<br />

− ω<br />

Nu apare aliere.<br />

M<br />

3


H<br />

x<br />

( ω) = T p ( ω)<br />

() t = xˆ () t ∗ h () t ↔ X ( ω) = Xˆ ( ω) ⋅ H ( ω)<br />

1<br />

=<br />

T<br />

x<br />

r<br />

r<br />

r<br />

∑ ∞<br />

k = −∞<br />

e<br />

X<br />

() t = x() t , a.p.t<br />

e<br />

ωc<br />

r<br />

⎧Te<br />

,<br />

= ⎨<br />

⎩ 0,<br />

( ω − kω<br />

) T p ( ω) = X ( ω)<br />

e<br />

e<br />

r<br />

ωc<br />

ω ≤ ω<br />

ω > ω<br />

c<br />

c<br />

ω<br />

M<br />

,<br />

≤ ω<br />

r<br />

c<br />

≤ ω<br />

=<br />

e<br />

− ω<br />

M<br />

ω<br />

e<br />

− ω<br />

M<br />

< ω<br />

M<br />

Apare alierea.<br />

4


H<br />

x<br />

=<br />

=<br />

r<br />

r<br />

( ω) = T p ( ω) ↔ h ( t)<br />

∞<br />

c<br />

() t = h () t ∗ xˆ () t = T ∗ ∑ x( kT ) δ( t − kT )<br />

∞<br />

∑<br />

k =−∞<br />

∞<br />

∑<br />

k =−∞<br />

x<br />

r<br />

∞<br />

c<br />

( kT ) T ∗δ( t − kT ) = ∑ x( kT )<br />

2ω<br />

ω<br />

e<br />

c<br />

devine: x<br />

r<br />

e<br />

e<br />

x<br />

ωc<br />

e<br />

( kT )<br />

e<br />

c( t − kTe<br />

)<br />

( t − kT )<br />

∞<br />

() t = ∑ x( kT )<br />

k =−∞<br />

c<br />

e<br />

sinω<br />

t<br />

πt<br />

sinω<br />

ω<br />

sinωct<br />

r<br />

= Te<br />

πt<br />

sinω<br />

t<br />

πt<br />

k =−∞<br />

e<br />

e<br />

M<br />

e<br />

sinω<br />

ω<br />

k =−∞<br />

Frecventa de esantionare minima este ω<br />

<strong>esantionarii</strong> la frecventa<br />

M<br />

( t − kTe<br />

)<br />

( t − kT )<br />

e<br />

e<br />

e<br />

e<br />

= 2ω<br />

M<br />

e<br />

=<br />

sin<br />

Te<br />

π<br />

ωc<br />

( t − kTe<br />

)<br />

( t − kT )<br />

denumirea de frecventa de esantionare Nyquist.In cazul<br />

Nyquist formula de reconstructie<br />

e<br />

si poarta<br />

=<br />

Harry Nyquist , (February 7, 1889 – April 4, 1976)<br />

was an important contributor to information theory.<br />

He was born in Nilsby, Sweden. He emigrated to the<br />

USA in 1907 and entered the University of North<br />

Dakota in 1912. He received a Ph.D. in physics at<br />

Yale University in 1917.<br />

He worked at AT&T's Department of Development and Research from 1917 to<br />

1934, and continued when it became Bell Telephone Laboratories in that year,<br />

until his retirement in 1954. As an engineer at Bell Laboratories, he did<br />

important work on thermal noise ("Johnson–Nyquist noise"), the stability of<br />

feedback amplifiers, telegraphy, facsimile, television, and other<br />

communications problems. In 1932, he published a classical paper on stability<br />

of feedback amplifiers (H. Nyquist, "Regeneration theory", Bell System<br />

Technical Journal, vol. 11, pp. 126-147, 1932). Nyquist stability criterion can<br />

now be found in all textbooks on feedback control theory. His early theoretical<br />

work on determining the bandwidth requirements for transmitting information,<br />

as published in "Certain factors affecting telegraph speed" (Bell System<br />

Technical Journal, 3, 324–346, 1924), laid the foundations for later advances by<br />

Claude Shannon, which led to the development of information theory.<br />

5


x<br />

<strong>Teorema</strong> WKS (Whittaker,<br />

Kotelnikov, Shannon)<br />

x() t este de banda limitatala ωM<br />

,in sensulca X ( ω)<br />

ω > ωM<br />

, atunci x()<br />

t este unic determinatde multimea<br />

{ x( nT ) n∈Z}<br />

, daca ω ≥ 2ω<br />

,<br />

Daca semnalul<br />

pentru<br />

sale<br />

putin dublulfrecventeimaxime.In conditiilede maisus semnalulinitial x<br />

() t = x( kT )<br />

e<br />

∑ ∞<br />

k = −∞<br />

e<br />

2ω<br />

ω<br />

c<br />

e<br />

c<br />

sinω<br />

ω<br />

c<br />

e<br />

se poate reconstitui din esantioanele sale,a.p.t prin relatia:<br />

c( t − kTe<br />

)<br />

( t − kT )<br />

cu conditia ca ω sa fie astfelalesincat sa satisfaca relatia: ω<br />

e<br />

M<br />

M<br />

≤ ω<br />

≡ 0<br />

esantioanelor<br />

adica frecventade esantionare este cel<br />

c<br />

≤ ω<br />

e<br />

() t<br />

− ω<br />

M<br />

.<br />

Edmund Taylor Whittaker Vladimir Kotelnikov Claude Shannon<br />

Wikipedia<br />

6


Edmund Whittaker was educated to Trinity College, Cambridge starting 1892.<br />

After Whittaker became a Fellow of Trinity College he began to teach and give<br />

lecture courses and, among his first pupils were G H Hardy and J H Jeans.<br />

Whittaker made revolutionary changes to the topics taught at Cambridge. He<br />

taught a course based on his famous book A Course of Modern Analysis<br />

(1902). This work is important in the study of functions of a complex variable.<br />

It also develops the theory of special functions and their related differential<br />

equations. Other courses Whittaker taught at Cambridge included astronomy,<br />

geometrical optics, and electricity and magnetism. Hardy and Jeans were not<br />

the only famous mathematicians which Whitttaker taught at Cambridge.<br />

His pupils included Bateman, Eddington, Littlewood, Turnbull,<br />

and Watson. An application which interested him came through his association<br />

with actuaries in Edinburgh who were dealing with life assurance. This motivated<br />

him to study the mathematics lying behind somewhat ad hoc methods that the<br />

actuaries were using and Whittaker proved some important results on interpolation<br />

as a consequence.<br />

Vladimir Aleksandrovich Kotelnikov (Russian, September 6, 1908 in Kazan –<br />

February 11, 2005 in Moscow) was an information theory pioneer from the<br />

Soviet Union. He was elected a member of the Russian Academy of Science, in<br />

the Department of Technical Science (radio technology) in 1953.<br />

• 1926-31 study of radio telecommunications at the Moscow Power Engineering<br />

Institute, dissertation in engineering science.<br />

• 1931-41 worked at the MEI as engineer, scientific assistant, laboratory director<br />

and lecturer.<br />

• 1941-44 worked as developer in the telecommunication industry.<br />

• 1944-80 full professor at the MEI.<br />

• 1953-87 deputy director and since 1954 director of the institute for radio<br />

technology and electronics at the Russian Academy of Science.<br />

• 1964 Lenin Prize<br />

• 1970-88 vice-president of the RAS; since 1988 adviser of the presidium.<br />

He is mostly known for having discovered, independently of others (e.g.<br />

Edmund Whittaker, Harry Nyquist, Claude Shannon), the sampling theorem in<br />

1933. This result of Fourier Analysis was known in harmonic analysis since the<br />

end of the 19th century and circulated in the 1920s and 1930s in the engineering<br />

community. He was the first to write down a precise statement of this theorem in<br />

relation to signal transmission.<br />

7


Shannon was born in Petoskey, Michigan. His childhood hero was Thomas<br />

Edison, whom he later learned was a distant cousin. In 1932 he entered the<br />

University of Michigan, where he took a course that introduced him to the<br />

works of George Boole. He graduated in 1936 with two bachelor's degrees,<br />

one in electrical engineering and one in mathematics, then began graduate<br />

study at the Massachusetts Institute of Technology (MIT), where he worked<br />

on Vannevar Bush's differential analyzer, an analog computer. A paper drawn<br />

from his 1937 master's thesis, A Symbolic Analysis of Relay and Switching<br />

Circuits, was published in the 1938 issue of the Transactions of the American<br />

Institute of Electrical Engineers. Next, Shannon worked on his dissertation at<br />

Cold Spring Harbor Laboratory, funded by the Carnegie Institution, to develop<br />

similar mathematical relationships for Mendelian genetics, which resulted in<br />

Shannon's 1940 PhD thesis at MIT, An Algebra for Theoretical Genetics.<br />

Shannon then joined Bell Labs to work on fire-control systems and<br />

cryptography during World War II, under a contract with section D-2 of the<br />

National Defense Research Committee. In 1948 Shannon published A<br />

Mathematical Theory of Communication, an article in two parts in the Bell<br />

System Technical Journal. He is also credited with the introduction of<br />

Sampling Theory.<br />

He returned to MIT to hold an endowed chair in 1956.<br />

Shannon and his famous electromechanical<br />

mouse Theseus, named after the Greek<br />

mythology hero of Minotaur and Labyrinth<br />

fame, and which he tried to teach to come<br />

out of the maze in one of the first<br />

experiments in artificial intelligence.<br />

Hobbies and inventions<br />

Outside of his academic pursuits,<br />

Shannon was interested in juggling,<br />

unicycling, and chess. He also<br />

invented many devices, including<br />

rocket-powered flying discs, a<br />

motorized pogo stick, and a flamethrowing<br />

trumpet for a science<br />

exhibition. One of his more<br />

humorous devices was a box kept on<br />

his desk called the "Ultimate<br />

Machine“. Otherwise featureless, the<br />

box possessed a single switch on its<br />

side. When the switch was flipped,<br />

the lid of the box opened and a<br />

mechanical hand reached out, flipped<br />

off the switch, then retracted back<br />

inside the box.<br />

8


Reconstructia prin filtrare trecejos<br />

<strong>ideala</strong><br />

c ( − e)<br />

( t kT )<br />

ωc( e − e)<br />

( nT kT )<br />

∞<br />

2ωc<br />

sinω<br />

t kT<br />

x() t = ∑ x( kTe<br />

)<br />

k =−∞ ωe ωc − e<br />

∞ 2ωc<br />

sin nT kT<br />

x( nTe) = ∑ x( kTe)<br />

k =−∞ ωe ωc e − e<br />

ωe<br />

ω M = ⇒ ω MTe<br />

= π<br />

2<br />

∞ sin π( n − k )<br />

x( nTe) = ∑ x( kTe)<br />

=<br />

k =−∞ π( n − k)<br />

∞<br />

= ∑ x( kTe) δ n,k = x( nTe)<br />

k =−∞<br />

⎧1, n = k<br />

δ n,k = ⎨<br />

⎩0, n ≠ k<br />

Tema de curs: Demonstrati ca relatia de reconstructie reprezinta o<br />

descompunere a semnalului initial intr-o baza ortonormata a<br />

spatiului semnalelor de energie finita si banda limitata.<br />

Reconstructia prin interpolare<br />

H<br />

r<br />

⎛ ωTe<br />

⎞<br />

⎜sin<br />

T 2<br />

⎟<br />

ω = e⎜ ⎟<br />

ωTe<br />

⎜<br />

⎟<br />

⎝ 2 ⎠<br />

( )<br />

2<br />

9


Reconstructia prin extrapolare<br />

de ordinul zero<br />

⎛ e ⎞<br />

r()<br />

= Te<br />

⎜ −<br />

2<br />

⎟<br />

⎝ ⎠<br />

2<br />

ωT<br />

ωT<br />

e<br />

e<br />

− j<br />

2sin<br />

e 2 2<br />

ω<br />

ωT<br />

ωT<br />

e<br />

e<br />

− j<br />

sin<br />

e 2 T 2<br />

e<br />

ωTe<br />

2<br />

ωTe<br />

− j<br />

( )<br />

2<br />

r<br />

e<br />

ω<br />

ω sin π<br />

−jπ ω ω e<br />

h t p t<br />

H ω = e T<br />

ωTe<br />

sin<br />

2 =<br />

ωTe<br />

2<br />

= e<br />

e<br />

e<br />

T<br />

↔ =<br />

=<br />

ω<br />

π ω<br />

10


<strong>Esantionarea</strong> <strong>ideala</strong> a<br />

semnalelor periodice<br />

2π<br />

ω = Nω ; ω = ; ω = Mω<br />

M<br />

( )<br />

0 0 e 0<br />

T0<br />

Pentru ca sa nu apara suprapunerea<br />

lobilor centrali este necesar ca:<br />

0 e 0 0<br />

( )<br />

( ) si<br />

Nω ωc<br />

Pentru a evita aparitia erorilor de aliere este necesar ca:<br />

e<br />

c<br />

( ω ) = ω ( ω ) = ⎨<br />

; Nω 0 2Nω = 2ω<br />

e 0 0 e 0 M<br />

Spre deosebire de semnalele aperiodice unde ω ≥2<br />

ω<br />

pentru semnalele periodice trebuie sa esantionam astfel incat<br />

ω > 2 ω Pe perioada celei mai rapide componente spectrale<br />

e M .<br />

trebuie sa prelevam mai mult de doua esantioane (adica cel putin<br />

3).<br />

e<br />

M<br />

,<br />

11


Daca T<br />

0<br />

este perioada fundamentalei si daca esantionarea se<br />

2π<br />

2π<br />

face conform relatiei ω = 2 + ω atunci = 2 + ;<br />

e<br />

( ) ( )<br />

N R 0<br />

N R<br />

Te<br />

T 0<br />

T0<br />

R=1,2,...sau Te<br />

=<br />

2N<br />

+ R<br />

Doar 2 N+ R esantioane pot fi distincte ca urmare a periodicitatii<br />

semnalului supus <strong>esantionarii</strong>. Toate pot fi prelevate<br />

intr-o singura perioada a fundamentalei T .<br />

0<br />

Acelasi rezultat se poate obtine si preluand<br />

esantioane succesive din perioade succesive.<br />

( ) = ( + ) = ( + )<br />

x kT x T kT x kT kT<br />

e 0 e 0 e<br />

T0<br />

T' e = kT0 + Te<br />

= kT0<br />

+<br />

2N<br />

+ R<br />

Aceasta posibilitate este valorificata in<br />

constructia osciloscoapelor cu esantionare.<br />

12


http://www.jhu.edu/~signals/sampling/index.html<br />

Tema de curs: Folositi acest<br />

applet pentru ca sa studiati<br />

esantionarea unui semnal<br />

sinusoidal.<br />

0<br />

2<br />

Relatii energetice<br />

Pentru semnale aperiodice esantionate este adevarata<br />

relatia de tip Rayleigh:<br />

∞<br />

∫<br />

() ( )<br />

W = x t dt = T x kT<br />

−∞<br />

Pentru semnale periodice esantionate este valabila relatia<br />

de tip Parseval:<br />

1 2 1<br />

∫<br />

0 T<br />

∞<br />

∑<br />

e<br />

k=−∞<br />

M −1<br />

∑<br />

() ( )<br />

P= x t dt = x kTe<br />

; M=2 N+ R, R=1,2,...<br />

T<br />

M<br />

k=<br />

0<br />

e<br />

2<br />

Energia sau puterea pot fi calculate fie din forma de variatie in timp<br />

fie in domeniul frecventa.<br />

2<br />

13


<strong>Esantionarea</strong> cu retinere<br />

xt % () = ⎡xt () δ () t⎤∗ ht () = xt $ () ∗ht<br />

()<br />

⎣ T e ⎦<br />

ωΔt<br />

ωΔt<br />

ωΔt<br />

2<br />

t<br />

j<br />

sin<br />

ωΔ<br />

j<br />

sin<br />

⎛ Δt<br />

⎞ −<br />

−<br />

ht () = p 2 2 2 2<br />

Δt<br />

⎜t− ⎟↔ e = e Δt<br />

⎝ 2 ⎠<br />

ω<br />

ωΔt<br />

2<br />

2<br />

Spectrul semnalului esantionat<br />

cu retinere<br />

14


Acest caz se numeste<br />

esantionare cu memorare.<br />

<strong>Esantionarea</strong> naturala<br />

x % () t = x() t qT () t = x() t ⎡h() t ∗δ T () t ⎤= ∑ x() t h( t− kTe) = ∑ x() t h( t−kTe)<br />

e<br />

⎛ Δt<br />

⎞<br />

unde ht p ⎜t ⎟ H e<br />

⎝ 2 ⎠<br />

() = − ↔ ( ω ) = 2<br />

Δt<br />

2<br />

⎣<br />

e<br />

⎦<br />

∞<br />

k=−∞<br />

jωΔt<br />

−<br />

ωΔt<br />

2sin<br />

2<br />

ω<br />

k=−∞<br />

15


Spectrul semnalului esantionat<br />

natural<br />

16


Relatia dintre spectrul unui<br />

semnal discret si spectrul<br />

semnalului analogic din care<br />

provine<br />

17


Intre cele doua axe de frecventa corespunzatoare spectrului semnalului analogic esantionat respectiv<br />

spectrului semnalului discret exista relatia: Ω=ωT. Se explica acum si natura periodica a spectrului<br />

π<br />

semnalului discret X d ( Ω)<br />

. Intre ΩM si ωM exista relatia: Ω M =ωMTe ; T e ≤ . ω<br />

e<br />

M<br />

18


<strong>Esantionarea</strong> semnalelor<br />

discrete<br />

In prelucrarea numerica a semnalelor apar situatii in care,<br />

ulterior achizitionarii esantioanelor, se constata ca frecventa<br />

de esantionare a fost prea mare. In astfel de situatii, cand nu<br />

se mai poate esantiona semnalul analogic, este posibila<br />

esantionarea semnalului numeric, retinandu-se tot a N-a valoare. Fie:<br />

N<br />

∞<br />

[ n] ∑ [ n-kN]<br />

δ = δ<br />

k=−∞<br />

$ [ ]<br />

Semnalul discret esantionat, xn, se obtine prin produsul:<br />

xn $ [ ] = xn [ ] δ N [ n] = xn [ ] ∑ δ[ n−kN]<br />

∞<br />

k=<br />

−∞<br />

∞<br />

∑<br />

k=−∞<br />

[ ] [ ]<br />

= xkNδ n−kN.<br />

N=3.<br />

19


N=3.<br />

Cum Ω = T ω , unde ω este frecventa maxima din<br />

[ ]<br />

spectrul semnalului analogic din care provine xn,<br />

iar T<br />

e<br />

M e M M<br />

pasul cu care acest semnal analogic a fost<br />

esantionat, rezulta:<br />

π π<br />

NT ≤ ; T ' ≤ ; T ' = NT<br />

ω ω<br />

e e e e<br />

M<br />

M<br />

S-ar fi respectat teorema WKS chiar daca semnalul<br />

() ar fi fost esantionat cu pasul Daca e<br />

xt T'. Ω −Ω


Reconstruirea semnalului<br />

discret din esantioanele sale<br />

H<br />

⎧N, Ω−2kπ ≤Ωc<br />

Ω = ⎨<br />

Ω ≤Ω ≤Ω −Ω<br />

⎩ 0,<br />

in rest<br />

( )<br />

r M c e M<br />

.<br />

Raspunsul la impuls al filtrului de reconstructie este:<br />

h<br />

r<br />

r<br />

[ n]<br />

sin nΩc<br />

Ωe<br />

π<br />

= ; Ω c = = .<br />

nΩ<br />

2 N<br />

c<br />

[ ] $ [ ] [ ] [ ]<br />

x n = x n ∗ h n = x n ⇔<br />

∞<br />

[ ] = ∑<br />

$ [ ] r [ − ]<br />

xn xkh n k<br />

k=−∞<br />

r<br />

xk $ [ ] = k≠ Nm xNm $ [ ] = xNm [ ]<br />

Dar 0 pentru si si deci<br />

⎛ π ⎞<br />

∞<br />

[ ] $ ∞ sin⎜<br />

n −πm<br />

⎟<br />

N<br />

xn= xNmh [ ] r [ n Nm] xNm<br />

⎝ ⎠<br />

∑<br />

− = ∑ [ ]<br />

π<br />

m=−∞<br />

m=−∞<br />

n −π m<br />

N<br />

21


<strong>Esantionarea</strong> si decimarea unui<br />

semnal discret<br />

22


N=2.<br />

23


<strong>Esantionarea</strong> spectrului unui<br />

semnal discret de durata finita<br />

24


[ ]<br />

Fie xn cu suportul 0 ≤n≤M −1 . In urma <strong>esantionarii</strong> spectrului acestui semnal se obtine<br />

% 2π<br />

semnalul xn [ ] periodic de perioada N = . Daca N≥Mnu se produce suprapunerea<br />

Ω<br />

grupurilor temporale corespunzatoare diverselor valori k.<br />

e<br />

% ⎧2π<br />

⎪ , 0≤n≤ N −1<br />

Prin multiplicarea semnalului xn [ ] cu fereastra temporala rectangulara wr<br />

[ n]<br />

= ⎨ N<br />

⎪⎩ 0,<br />

in rest<br />

[ ] , identic cu semnalul [ ] [ ] = [ ] = % [ ] [ ]<br />

se obtine semnalul reconstruit x n x n : x n x n x n w n .<br />

r r r<br />

25


( )<br />

Daca spectrul X Ω se esantioneaza prea rar, M < N, apare suprapunerea<br />

grupurilor temporale, adica erori de tip "alias". Semnalul xn<br />

fi reconstruit din spectrul esantionat.<br />

[ ]<br />

nu mai poate<br />

Masuri practice la esantionarea<br />

semnalelor analogice<br />

De obicei nu se cunoaste largimea de banda a semnalului ce<br />

urmeaza a fi esantionat. Acesta poate avea componente spectrale<br />

de frecventa mare, neinteresante in aplicatia considerata.<br />

Acestea pot fi de exemplu cauzate de zgomotul ce insoteste<br />

semnalul util. Exista deci riscul aparitiei erorilor de tip "alias".<br />

Pentru evitarea lor se prevede in structura lantului de prelucrare<br />

a semnalului, inaintea circuitului de esantionare, un filtru trece jos<br />

numit filtru "anti-alias" sau filtru de garda.<br />

26


<strong>Esantionarea</strong> trebuie facuta cu<br />

o frecventa de cel putin 2 ori<br />

mai mare decat frecventa de<br />

oprire ωs ωe ≥2ωs.<br />

De asemenea trebuie sa avem<br />

ωM<br />

≤ωp.<br />

Deci:<br />

ωe<br />

ωM ≤ω p


Semnal de vorbire fara aliasing.<br />

Semnal de vorbire cu aliasing.<br />

Semnal muzical fara aliasing.<br />

Semnal muzical cu aliasing.<br />

<strong>Esantionarea</strong> semnalelor trece<br />

banda<br />

Semnale de tip "trece jos" - spectrul concentrat in benzi care includ frecventa nula.<br />

Semnale de tip "trece banda" - au suportul spectrului de forma [ −ωM , −ωm] ∪[ ωm, ωM<br />

].<br />

Reconstructia perfecta a unui semnal<br />

trece banda esantionat ideal se poate<br />

realiza pe baza teoremei WKS, ω e ≥ 2 ω M .<br />

Uneori semnalele trece banda pot fi<br />

reconstruite din esantioanele lor chiar daca<br />

s-a folosit o frecventa de esantionare mai<br />

mica decat frecventa Nyquist.<br />

28


Cazul semnalelor trece banda<br />

de banda ingusta<br />

ωM<br />

−ω m < 1.<br />

ωm<br />

Suportul spectrului unui semnal trece banda de banda ingusta<br />

esantionat ideal este de forma:<br />

supp X n , n n , n .<br />

{ }<br />

{ ( ω )} = U [ −ω + ω −ω + ω ] ∪[ ω + ω ω + ω ]<br />

e M e m e m e M e<br />

n∈Z<br />

Semnalul trece banda de banda ingusta poate fi reconstruit<br />

perfect din esantioanele sale chiar daca a fost folosita o<br />

frecventa de esantionare mai mica decat frecventa Nyquist.<br />

Conditia de reconstructie perfecta este:<br />

[ −ω M + k ωe, −ω m + kωe] I [ ω m + l ωe, ω M + l ω e]<br />

= ∅, ∀ k,<br />

l∈<br />

Z.<br />

Pentru 0 conditia devine [ ] I [ ]<br />

l = , −ω + k ω , −ω + k ω ω , ω =∅ ∀k∈Z.<br />

M e m e m M<br />

adica:<br />

⎧ -ω<br />

M + kωe ≤ωm 2ωM<br />

2ωm<br />

⎨ sau ≤ω e ≤ .<br />

⎩ −ω M + ( k + 1)<br />

ω e ≥ ω M k + 1 k<br />

Daca exista valori intregi k, pentru care aceasta conditie este satisfacuta, atunci<br />

exista valori ale frecventei de esantionare inferioare frecventei Nyquist pentru<br />

care semnalele trece banda de banda ingusta pot fi reconstruite in urma<br />

<strong>esantionarii</strong> ideale.<br />

29


Solutia din multimea numerelor intregi a dublei inecuatii<br />

ωm<br />

obtinute este: 0 < k ≤ . Notand cu n0<br />

partea intreaga<br />

ω −ω<br />

( )<br />

a fractiei ω / ω −ω<br />

M<br />

m M m<br />

m<br />

, rezulta ca frecventa de esantionare<br />

⎡2ωM<br />

2ωm<br />

⎤<br />

va apartine unor intervale de forma ⎢ , cu k ∈{ 1,...,n 0 }.<br />

k 1 k<br />

⎥<br />

⎣ + ⎦<br />

Exemplu<br />

ωm<br />

ω m = 8 π si ω M = 10 π . Valoarea factorului n 0 este = 4.<br />

ω −ω<br />

Valorile admisibile pentru k sunt 1, 2, 3 si 4. Acestor valori le<br />

corespund urmatoarele domenii pentru frecventa de esantionare:<br />

{ 4π} U[ 5 π , 5,33π] U[ 6 66 π , 8π] U[ 10 π , 16π] U[<br />

20 π , ∞]<br />

, .<br />

m<br />

M<br />

30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!