06.11.2014 Views

Garrett Catalog - RB Racing

Garrett Catalog - RB Racing

Garrett Catalog - RB Racing

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Garrett</strong> ® -Sponsored Drivers<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

<br />

www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Table of Contents<br />

Why <strong>Garrett</strong> ® ? - History and Testing.................................................pg 4<br />

<strong>Garrett</strong> ® Technology..........................................................................pg 5<br />

Turbo Basics.....................................................................................pg 6<br />

Turbo Tech; How to Choose the Right Turbo - Gasoline ..................pg 9<br />

Turbo Tech; How to Choose the Right Turbo - Diesel.......................pg 13<br />

Turbo System Optimization ..............................................................pg 16<br />

Troubleshooting.................................................................................pg 19<br />

Displacement Charts ........................................................................pg 20<br />

<strong>Garrett</strong> ® GT & GTX Turbochargers...................................................pg 21<br />

T-Series Ball Bearing Upgrades........................................................pg 76<br />

Mitsubishi Evolution X Upgrade Kit...................................................pg 77<br />

Diesel PowerMax TM Upgrade Kits.....................................................pg 78<br />

Drag <strong>Racing</strong>-Specific Turbos............................................................pg 81<br />

Turbocharger Connection Sizes & Dimensions.................................pg 82<br />

Wastegates & Blow-Off Valves.........................................................pg 87<br />

<strong>Garrett</strong> ® Accessories.........................................................................pg 88<br />

Intercoolers.......................................................................................pg 89<br />

<strong>Garrett</strong> ® GT Turbocharger Index.......................................................pg 90<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com


Why <strong>Garrett</strong> ® ?<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

<strong>Garrett</strong> ® History<br />

The heritage of the turbo business began in 1936 when<br />

young Cliff <strong>Garrett</strong> formed his company in a tiny, one-room<br />

office in Los Angeles. With encouragement and financial<br />

support from friends like Jack<br />

Northrop and Harry Wetzel, plus<br />

$5,000 he borrowed on his own,<br />

<strong>Garrett</strong> founded the company that<br />

would later become the <strong>Garrett</strong><br />

Corporation. Number of employees:<br />

1. Number of customers: 1.<br />

Today, that business couldn’t<br />

be more different. Over time, the<br />

turbocharging business spun off to<br />

establish itself as a serious player<br />

in the engine boosting industry.<br />

<strong>Garrett</strong> ® product is produced by over 6,000 employees and<br />

serves the leading global engine and vehicle manufacturers,<br />

including Audi, BMW, Chrysler, Daimler Benz, DDC, Fiat,<br />

Ford, General Motors, International Truck Co, Nissan,<br />

Peugeot, Renault, Saab and Volkswagen.<br />

Through names such as AiResearch, AlliedSignal, and the<br />

Honeywell of today, <strong>Garrett</strong> ® has sustained its reputation for<br />

revolutionizing turbocharger technologies generation after<br />

generation. From its long list of industry firsts to its leadingedge<br />

patented dual-ball bearing turbos for high performance<br />

vehicles, <strong>Garrett</strong> ® develops and manufactures the same<br />

cutting-edge boosting expertise that goes into all <strong>Garrett</strong> ®<br />

products. The fact that <strong>Garrett</strong> ® turbochargers are the<br />

preferred choice of leading original equipment manufacturers<br />

and many top race teams in World Rally, American Le Mans,<br />

24 Hours of Le Mans, and Pikes Peak is a telling example.<br />

Today, <strong>Garrett</strong> ® continues to redefine the art and science<br />

of boosting technology with advanced air management<br />

systems for the full spectrum of modern engines. With over<br />

30,000 turbos produced EVERY DAY, you know the <strong>Garrett</strong> ®<br />

name is one you can trust.<br />

<strong>Garrett</strong> ® Testing<br />

A turbocharger is a highly technical product that requires<br />

superior design and intensive capital to produce. It must<br />

meet the most severe requirements that only a world-class<br />

manufacturer like Honeywell’s <strong>Garrett</strong> ® brand can achieve.<br />

<strong>Garrett</strong> ® is one of the few brands that subjects its turbos<br />

to several OE qualification tests that ensure that “<strong>Garrett</strong>” is<br />

only stamped on safe and reliable turbos! Some of these<br />

tests include:<br />

* On-Engine Durability - A 1,000-hour general turbocharger<br />

durability test that is run on-engine in an engineering<br />

laboratory.<br />

* Compressor & Turbine Housing Containment - A compressor/turbine<br />

wheel is set to “hub” burst at a specific speed.<br />

No portion of the wheel is allowed to penetrate a “containment<br />

shroud” surrounding the turbocharger; a test to ensure<br />

safety.<br />

* Shaft Motion - The<br />

maximum tolerances<br />

of the bearing system<br />

are tested for rotordynamic<br />

stability beyond<br />

the maximum<br />

turbocharger operating<br />

speed. This means no<br />

bearing problems and<br />

a long turbo life.<br />

* Compressor & Turbine Performance - The entire operating<br />

range of both the compressor and turbine are mapped on a<br />

“Performance Gas Stand.” These test cells are calibrated to<br />

strict standards to assure accuracy and consistency.<br />

* Heat Soakback - A turbocharger instrumented with thermocouples<br />

is taken<br />

beyond maximum operating<br />

temperature<br />

and shut down hard!<br />

Repeat this test four<br />

more times and make<br />

sure maximum temperatures<br />

stay within<br />

strict limits to avoid oil<br />

“coking” or build up inside<br />

the center housing. This is particularly critical for high<br />

temperature gasoline applications.<br />

* Thermal Cycle - A 200-hour endurance test that cycles the<br />

turbocharger from low temperature to “glowing red” every 10<br />

minutes. To ensure long turbo life, no cracking of the turbine<br />

housing or distortion of the heat shroud is accepted.<br />

* Rotor Inertia - A measurement made to document the rotational<br />

inertia of the compresor and turbine wheels. <strong>Garrett</strong> ®<br />

brand products are known for their high flow / low inertia<br />

characteristics.<br />

Vistit www.TurboBy<strong>Garrett</strong>.com for complete test list.<br />

<br />

www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

<strong>Garrett</strong> ® Technology<br />

<strong>Garrett</strong> ® GTX Turbochargers<br />

The next step in the evolution of the turbocharger is here!<br />

<strong>Garrett</strong> ® GTX Turbos feature all new compressor wheels with<br />

next generation aerodynamics and improved efficiency to<br />

deliver wicked performance!<br />

<strong>Garrett</strong> ® GTX Turbochargers provide higher flow and greater<br />

boost pressure ratios beyond the world-class <strong>Garrett</strong> ® GT<br />

Series compressor wheels.<br />

* 10%+ Gain in flow over traditional GT compressor<br />

wheel designs<br />

* 10%+ Higher pressure ratio compared to traditional GT<br />

compressor wheel designs<br />

* Forged, fully machined wheels<br />

(billet) for expedited release<br />

* 11 Full-blade design for<br />

improved efficiency and ultra<br />

quiet operation<br />

* Outline interchangeable with<br />

<strong>Garrett</strong> ® GT Series turbos<br />

* <strong>Garrett</strong> ® OE-quality for<br />

unbeatable reliability<br />

<strong>Garrett</strong> ® Dual Ball Bearing<br />

The journal bearing has long been the workhorse of the<br />

turbocharger. However, in the 1990’s, <strong>Garrett</strong> ® engineers developed<br />

a radically new and extremely efficient turbocharger.<br />

With wheel and bearing advances that provide crisp and strong<br />

throttle response up to 15% faster than traditional bearings, a<br />

<strong>Garrett</strong> ® turbo will accelerate your vehicle more quickly than<br />

ever.<br />

The patented dual ball bearing design also requires less oil to<br />

provide adequate lubrication. This in turn lowers oil volume and<br />

the chances for seal leakage. The lessened need for oil also<br />

makes the bearings more tolerant to marginal lube conditions<br />

and diminishes the possibility of turbocharger failure on engine<br />

shut down.<br />

The <strong>Garrett</strong> ® dual ball bearing cartridge gives better damping<br />

and control over shaft motion allowing enhanced reliability for both everyday and extreme driving conditions. The opposed<br />

angular contact bearing cartridge eliminates the need for the thrust bearing, commonly the weak link in the turbo bearing<br />

system. The bearing system in the GT turbocharger allows for improved shaft stability and less drag throughout the speed<br />

range.<br />

While T-series turbos typically contain 54 components, GT turbos have an average of only 29. The 45% decrease in parts<br />

diminishes the opportunity for failure and results in smoother operation.<br />

A <strong>Garrett</strong> ® Turbo for Your Vehicle?<br />

<strong>Garrett</strong> ® is the only brand to offer a searchable database for turbo kits using its product.<br />

Visit www.TurboBy<strong>Garrett</strong>.com and enter your vehicle into our Turbo Application Search Engine (TASE) to find a turbo kit<br />

available for it using <strong>Garrett</strong> ® turbochargers!<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com


Turbo Basics<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

How a Turbo System Works<br />

Engine power is proportional to the<br />

amount of air and fuel that can get into<br />

the cylinders. All else being equal,<br />

larger engines flow more air and as<br />

such will produce more power.<br />

If we want our small engine to<br />

perform like a big engine, or simply<br />

make our bigger engine produce<br />

more power, our ultimate objective is<br />

to draw more air into the cylinder. By<br />

installing a <strong>Garrett</strong> ® turbocharger, the<br />

power and performance of an engine<br />

can be dramatically increased.<br />

The layout of the turbocharger<br />

in a given application is critical to a<br />

properly performing system.<br />

So how does a turbocharger get<br />

more air into the engine? Let us first<br />

look at the schematic to the upper<br />

right.<br />

• Ambient air passes through the air<br />

filter (not shown) before entering the<br />

compressor [1].<br />

• The air is then compressed which<br />

raises the air’s density<br />

(mass / unit volume) [2].<br />

• Many turbocharged engines have a<br />

charge air cooler (aka intercooler)<br />

[3] that cools the compressed air to<br />

further increase its density and to<br />

increase resistance to detonation.<br />

• After passing through the intake<br />

manifold [4], the air enters<br />

the engine’s cylinders, which<br />

contain a fixed maximum<br />

volume. Since the air is at an<br />

elevated density, each cylinder<br />

can contain an increased mass<br />

of air. Higher air mass flow<br />

rate allows a higher fuel flow<br />

rate (with similar air/fuel ratio).<br />

Combusting more fuel results in<br />

more power being produced for<br />

a given size or displacement.<br />

• After the fuel is burned in<br />

the cylinder, it is expelled<br />

during the cylinder’s exhaust<br />

stroke into the exhaust manifold<br />

[5].<br />

• The high temperature gas<br />

then continues on to the<br />

turbine [6]. The turbine creates<br />

backpressure on the engine<br />

which means engine exhaust<br />

pressure is higher than<br />

atmospheric pressure.<br />

• A pressure and temperature<br />

drop occurs (expansion) across<br />

the turbine [7], which harnesses<br />

the energy of the exhaust gas to<br />

provide the power necessary to drive<br />

the compressor.<br />

What are the Components of a<br />

Turbocharger?<br />

• Compressor Housing<br />

• Turbine Housing<br />

• Center Housing and Rotating<br />

Assembly (CHRA)<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Compressor Wheel<br />

Turbine Wheel Assembly<br />

(wheel and shaft)<br />

Backplate<br />

Bearing System<br />

Oil Inlet<br />

Oil Outlet<br />

<br />

www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbo Basics<br />

How Do I Choose the Right Turbo?<br />

Selecting the proper turbocharger for your specific<br />

application requires many inputs. With decades of collective<br />

turbocharging experience, the <strong>Garrett</strong> ® Performance<br />

Distributors can assist in selecting the right turbocharger for<br />

your application.<br />

The primary input in determining which turbocharger<br />

is appropriate is to have a target horsepower in mind.<br />

This should be as realistic as possible for the application.<br />

Remember that engine power is generally proportional to<br />

air and fuel flow. Thus, once you have a target power level<br />

identified, you begin to hone in on the turbocharger size,<br />

which is highly dependent on air flow requirements.<br />

Other important factors include the type of application. An<br />

autocross car, for example, requires rapid boost response.<br />

A smaller turbocharger or smaller turbine housing would be<br />

most suitable for this application. While this will sacrifice<br />

ultimate power due to increased exhaust backpressure at<br />

higher engine speeds, boost response of the small turbo will<br />

be excellent.<br />

Alternatively, on a car dedicated to track days, peak<br />

horsepower is a higher priority than low-end torque. Plus,<br />

engine speeds tend to be consistently higher. Here, a<br />

larger turbocharger or turbine housing will provide reduced<br />

backpressure but less immediate low-end response. This<br />

is a welcome trade-off given the intended operating<br />

conditions.<br />

Selecting the turbocharger for your application goes<br />

beyond “how much boost” you want to run. Defining your<br />

target power level and the primary use for the application<br />

are the first steps in selecting the best <strong>Garrett</strong> ® Turbo<br />

for your vehicle. This catalog includes the formulas and<br />

considerations needed to corectly match a turbo to either<br />

your gasoline or diesel engine!<br />

What is A/R?<br />

A/R describes a geometric characteristic of all compressor<br />

and turbine housings. It is defined as the inlet cross-sectional<br />

area divided by the radius from the turbo centerline to the<br />

centroid of that area.<br />

Compressor A/R - Compressor performance is largely<br />

insensitive to changes in A/R, but generally larger A/R housings<br />

are used to optimize the performance for low boost applications,<br />

and smaller housings<br />

are used for high boost<br />

applications. Usually there<br />

are not A/R options available<br />

for compressor housings.<br />

Turbine A/R – Turbine<br />

performance is greatly<br />

affected by changing the<br />

A/R of the housing. Turbine<br />

A/R is used to adjust the<br />

flow capacity of the turbine.<br />

Using a smaller A/R will increase the exhaust gas velocity<br />

into the turbine wheel, causing the wheel to spin faster at<br />

lower engine RPMs giving a quicker boost rise. This will<br />

also tend to increase exhaust backpressure and reduce the<br />

max power at high RPM. Conversely, using a larger A/R<br />

will lower exhaust gas velocity and delay boost rise, but the<br />

lower backpressure will give better high-RPM power. When<br />

deciding between A/R options, be realistic with the intended<br />

vehicle use and use the A/R to bias the performance toward<br />

the desired powerband.<br />

What is Wheel Trim?<br />

Trim is an area ratio used to describe both turbine and<br />

compressor wheels. Trim is calculated using the inducer and<br />

exducer diameters.<br />

Trim = (Inducer 2 /Exducer 2 ) x 100<br />

Example:<br />

Inducer diameter = 88mm<br />

Exducer diameter = 117.5mm<br />

Trim = (88 2 /117.5 2 ) x 100= 56 Trim<br />

As trim is increased, the wheel can support more air/gas flow.<br />

Compressor Wheel Trim = (Inducer 2 /Exducer 2 ) x 100<br />

Turbine Wheel Trim = (Exducer 2 /Inducer 2 ) x 100<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com


Turbo Basics<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

Other Components<br />

Blow-Off (Bypass) Valves<br />

The blow-off valve (BOV) is a<br />

pressure relief device on the intake<br />

tract to prevent the turbo’s compressor<br />

from going into surge. The BOV should<br />

be installed between the compressor<br />

discharge and the throttle body,<br />

preferably downstream of the charge<br />

air cooler (if equipped).<br />

When the throttle is closed rapidly, the<br />

this energy (e.g. exhaust flow) reduces<br />

the power driving the turbine wheel<br />

to match the power required for a<br />

given boost level. Similar to the BOV,<br />

the wastegate uses boost pressure<br />

and spring force to regulate the flow<br />

bypassing the turbine.<br />

<strong>Garrett</strong> ® ball bearing turbochargers<br />

require less oil than journal bearing<br />

turbos. Therefore an oil inlet restrictor<br />

is recommended if you have oil<br />

pressure over approximately 40 psig.<br />

The oil outlet should be plumbed to the<br />

oil pan above the oil level (for wet sump<br />

systems). Since the oil drain is gravity<br />

fed, it is important that the oil outlet<br />

points downward, and that the drain<br />

tube does not become horizontal or go<br />

“uphill” at any point.<br />

airflow is quickly reduced, causing flow<br />

instability and pressure fluctuations.<br />

These rapidly cycling pressure<br />

fluctuations are the audible evidence<br />

of surge. Surge can eventually lead to<br />

bearing failure due to the high loads<br />

associated with it.<br />

Blow-off valves use a combination<br />

of manifold pressure signal and spring<br />

force to detect when the throttle is<br />

closed. When the throttle is closed<br />

rapidly, the BOV vents boost from<br />

the intake tract to atmosphere or<br />

recirculates it to relieve the pressure<br />

from the turbo, eliminating surge.<br />

Wastegates<br />

On the exhaust side, a wastegate<br />

provides a means to control the boost<br />

pressure generated by the turbocharger<br />

by controlling the turbocharger shaft<br />

speed. Some commercial diesel<br />

applications do not use a wastegate at<br />

all. This type of system is called a free<br />

floating turbocharger.<br />

However, the vast majority of gasoline<br />

performance applications require a<br />

wastegate. There are two configurations<br />

of wastegates: internal and external.<br />

Both internal and external wastegates<br />

provide a means for exhaust gas to<br />

bypass the turbine wheel. Bypassing<br />

Internal wastegates are built into<br />

the turbine housing and consist of a<br />

“flapper” valve, crank arm, rod end,<br />

and pneumatic actuator. It is important<br />

to connect this actuator only to boost<br />

pressure since it is not designed to<br />

handle vacuum and as such should<br />

not be referenced to an intake<br />

manifold.<br />

External wastegates are added<br />

to the exhaust plumbing on the<br />

exhaust manifold or header. The<br />

advantage of external wastegates<br />

is that the bypassed flow can<br />

be reintroduced into the exhaust<br />

stream further downstream of the<br />

turbine. This improves the turbine’s<br />

performance. On racing applications,<br />

this wastegated exhaust flow can be<br />

vented directly to atmosphere.<br />

Oil & Water Plumbing<br />

The intake and exhaust plumbing<br />

often receives the focus, leaving the<br />

oil and water plumbing neglected.<br />

Following a hot shutdown of a<br />

turbocharger, heat soak begins. This<br />

means that the heat in the head, exhaust<br />

manifold, and turbine housing raises<br />

the temperature of the turbo’s center<br />

housing. These extreme temperatures<br />

can result in oil coking.<br />

Water-cooled center housings<br />

were introduced to minimize the<br />

effects of heat soak-back. These<br />

use unpressurized coolant from the<br />

engine to act as a heat sink after<br />

engine shutdown, preventing the oil<br />

from coking. The water lines utilize<br />

a thermal siphon effect to reduce the<br />

peak heat soak-back temperature after<br />

key-off. The layout of the pipes should<br />

eliminate peaks and troughs with the<br />

(cool) water inlet on the low side. To<br />

help this along, it is advantageous to<br />

tilt the turbocharger approximately 25°<br />

about the axis of shaft rotation.<br />

<strong>Garrett</strong> ® offers many turbos that are<br />

water-cooled for enhanced durability.<br />

Want to learn more?<br />

Visit http://www.TurboBy<strong>Garrett</strong>.com<br />

and check out the Turbo Tech section<br />

for more great articles!<br />

<br />

www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbo Selection - Gas<br />

This article is more involved and will describe parts of the<br />

compressor map, how to estimate pressure ratio and mass flow<br />

rate for your engine as well as how to plot the points on the maps to<br />

help choose the right turbocharger. Have your calculator handy!<br />

Parts of the Compressor Map<br />

The compressor map is a graph that describes a particular compressor’s<br />

performance characteristics, including efficiency, mass<br />

flow range, boost pressure capability, and turbo speed. Shown below<br />

is a figure that identifies aspects of a typical compressor map:<br />

Pressure Ratio<br />

Pressure Ratio ( ) is defined as the Absolute outlet pressure<br />

divided by the Absolute Inlet Pressure.<br />

Where:<br />

= Pressure Ratio<br />

P1c = Compressor Inlet<br />

Pressure<br />

P2c = Compressor Discharge<br />

Pressure<br />

It is important to use<br />

units of Absolute Pressure<br />

for both P1c and<br />

P2c. Remember that<br />

Absolute Pressure at<br />

sea level is 14.7 psia (in<br />

units of psia, the “a” refers<br />

to “absolute”). This<br />

is referred to as standard<br />

atmospheric pressure at<br />

standard conditions.<br />

Gauge Pressure (in<br />

units of psig, the g refers<br />

to “gauge”) measures the pressure above atmospheric, so a<br />

Gauge Pressure reading at atmospheric conditions will read zero.<br />

Boost gauges measure the manifold pressure relative to atmospheric<br />

pressure, and thus are measuring Gauge Pressure. This<br />

is important when determining P2c. For example, a reading of 12<br />

psig on a boost gauge means that the air pressure in the manifold<br />

is 12 psi above atmospheric pressure.<br />

For a day at standard atmospheric conditions:<br />

12 psig + 14.7 psia = 26.7 psi Absolute Pressure in the manifold,<br />

the Pressure Ratio at this condition can now be calculated:<br />

26.7 psia / 14.7 psia = 1.82<br />

However, this assumes there is no adverse impact of the air filter<br />

assembly at the compressor inlet.<br />

In determining Pressure Ratio, the Absolute Pressure at the<br />

compressor inlet (P2c) is often LESS than the Ambient Pressure,<br />

especially at high load. Why is this? Any restriction (caused by<br />

the air filter or restrictive ducting) will result in a “depression,”<br />

or pressure loss, upstream of the compressor that needs to be<br />

accounted for when determining pressure ratio. This depression<br />

can be 1 psig or more on some intake systems. In this<br />

case P1c on a standard day is:<br />

14.7psia – 1 psig = 13.7 psia at compressor inlet<br />

Taking into account the 1 psig intake depression, the pressure<br />

ratio is now.<br />

(12 psig + 14.7 psia) / 13.7 psia = 1.95.<br />

That’s great, but what if you’re not at sea level? In this case,<br />

simply substitute the actual atmospheric pressure in place of the<br />

14.7 psi in the equations above to give a more accurate calculation.<br />

At higher elevations, this can have a significant effect on pressure<br />

ratio.<br />

For example, at Denver’s 5000 feet elevation, the atmospheric<br />

pressure is typically around 12.4 psia. In this case, the pressure<br />

ratio calculation, taking into account the intake depression, is:<br />

(12 psig + 12.4 psia) / (12.4 psia – 1 psig) = 2.14<br />

Compared to the 1.82 pressure ratio calculated originally, this<br />

is a big difference.<br />

As you can see in these examples, pressure ratio depends on a<br />

lot more than just boost.<br />

Mass Flow Rate<br />

Mass Flow Rate is the mass of air flowing through a compressor<br />

(and engine!) over a given period of time and is commonly<br />

expressed as lb/min (pounds per minute). Mass flow can be<br />

physically measured, but in many cases it is sufficient to estimate<br />

the mass flow for choosing the proper turbo.<br />

Many people use Volumetric Flow Rate (expressed in cubic feet<br />

per minute, CFM or ft 3 /min) instead of mass flow rate. Volumetric<br />

flow rate can be converted to mass flow by multiplying by the air<br />

density. Air density at sea level is 0.076lb/ft 3 .<br />

What is my mass flow rate? As a very general rule, turbocharged<br />

gasoline engines will generate 9.5-10.5 horsepower (as measured<br />

at the flywheel) for each lb/min of airflow. So, an engine with a target<br />

peak horsepower of 400 HP will require 36-44 lb/min of airflow to<br />

achieve that target. This is just a rough first approximation to help<br />

narrow the turbo selection options.<br />

Surge Line<br />

Surge is the left hand boundary of the compressor map.<br />

Operation to the left of this line represents a region of flow<br />

instability. This region is characterized by mild flutter to wildly<br />

fluctuating boost and “barking” from the compressor. Continued<br />

operation within this region can lead to premature turbo failure<br />

due to heavy thrust loading.<br />

Surge is most commonly experienced when one of two<br />

situations exist. The first and most damaging is surge under load.<br />

It can be an indication that your compressor is too large. Surge<br />

is also commonly experienced when the throttle is quickly closed<br />

after boosting. This occurs because mass flow is drastically<br />

reduced as the throttle is closed, but the turbo is still spinning<br />

and generating boost. This immediately drives the operating<br />

point to the far left of the compressor map, right into surge. Surge<br />

will decay once the turbo speed finally slows enough to reduce<br />

the boost and move the operating point back into the stable<br />

region. This situation is commonly addressed by using a Blow-<br />

Off Valve (BOV) or bypass valve. A BOV functions to vent intake<br />

pressure to atmosphere so that the mass flow ramps down<br />

smoothly, keeping the compressor out of surge. In the case of a<br />

recirculating bypass valve, the airflow is recirculated back to the<br />

compressor inlet.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com


Turbo Selection - Gas<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

A Ported Shroud Compressor (see Fig. 2) is a feature that is<br />

incorporated into the compressor housing. It functions to move<br />

the surge line further to the left (see Fig. 3) by allowing some<br />

airflow to exit the wheel through the port to keep surge from<br />

occurring. This provides additional useable range and allows<br />

a larger compressor to be used for higher flow requirements<br />

without risking running the compressor into a dangerous surge<br />

condition. The presence of<br />

the ported shroud usually<br />

has a minor negative impact<br />

on compressor efficiency.<br />

The Choke Line is the<br />

right hand boundary of<br />

the compressor map. For<br />

<strong>Garrett</strong> ® maps, the choke<br />

line is typically defined by the<br />

point where the efficiency<br />

drops below 58%. In<br />

addition to the rapid drop of<br />

compressor efficiency past<br />

this point, the turbo speed<br />

Fig 2<br />

will also be approaching or<br />

exceeding the allowable limit.<br />

If your actual or predicted<br />

operation is beyond this<br />

limit, a larger compressor is<br />

necessary.<br />

Turbo Speed Lines are<br />

lines of constant turbo speed.<br />

Turbo speed for points<br />

between these lines can be<br />

estimated by interpolation. As<br />

turbo speed increases, the<br />

pressure ratio increases and/<br />

or mass flow increases. As<br />

indicated above in the choke<br />

line description, the turbo<br />

Fig 3<br />

speed lines are very close together at the far right edge of the<br />

map. Once a compressor is operating past the choke limit, turbo<br />

speed increases very quickly and a turbo over-speed condition is<br />

very likely.<br />

Efficiency Islands are concentric regions on the maps that<br />

represent the compressor efficiency at any point on the map. The<br />

smallest island near the center of the map is the highest or peak<br />

efficiency island. As the rings move out from there, the efficiency<br />

drops by the indicated amount until the surge and choke limits are<br />

reached.<br />

Plotting Your Data on the Compressor Map<br />

In this section, methods to calculate mass flow rate and boost<br />

pressure required to meet a horsepower target are presented.<br />

This data will then be used to choose the appropriate compressor<br />

and turbocharger. Having a Horsepower Target in mind is a vital<br />

part of the process. In addition to being necessary for calculating<br />

mass flow and boost pressure, a Horsepower Target is required<br />

for choosing the right fuel injectors, fuel pump and regulator, and<br />

other engine components.<br />

Estimating Required Air Mass Flow and Boost Pressures to<br />

reach a Horsepower Target.<br />

Things you need to know:<br />

-Horsepower Target<br />

-Engine Displacement<br />

-Maximum RPM<br />

-Ambient conditions (temperature and barometric<br />

pressure. Barometric pressure is usually given as inches of mercury<br />

and can be converted to psi by dividing by 2)<br />

Things you need to estimate:<br />

· Engine Volumetric Efficiency. Typical numbers for peak Volumetric<br />

Efficiency (VE) range in the 95%-99% for modern 4-valve heads, to<br />

88%-95% for 2-valve designs. If you have a torque curve for your<br />

engine, you can use this to estimate VE at various engine speeds.<br />

On a well-tuned engine, the VE will peak at the torque peak, and<br />

this number can be used to scale the VE at other engine speeds.<br />

A 4-valve engine will typically have higher VE over more of its rev<br />

range than a 2-valve engine.<br />

· Intake Manifold Temperature. Compressors with higher efficiency<br />

give lower manifold temperatures. Manifold temperatures of<br />

intercooled setups are typically 100 - 130 degrees F, while nonintercooled<br />

values can reach from 175-300 degrees F.<br />

· Brake Specific Fuel Consumption (BSFC). BSFC describes the<br />

fuel flow rate required to generate each horsepower. General<br />

values of BSFC for turbocharged gasoline engines range from 0.50<br />

to 0.60 and higher.<br />

The units of BSFC are<br />

Lower BSFC means that the engine requires less fuel to generate<br />

a given horsepower. Race fuels and aggressive tuning are required<br />

to reach the low end of the BSFC range described above.<br />

For the equations below, we will divide BSFC by 60 to convert<br />

from hours to minutes.<br />

To plot the compressor operating point, first calculate airflow:<br />

Where:<br />

Wa= Airflow actual (lb/min)<br />

HP = Horsepower Target (flywheel)<br />

= Air/Fuel Ratio<br />

= Brake Specific Fuel Consumption = ( ) ÷ 60 (to<br />

convert from hours to minutes)<br />

EXAMPLE:<br />

I have an engine that I would like to make 400HP, I want to<br />

choose an air/fuel ratio of 12 and use a BSFC of 0.55. Plugging<br />

these numbers into the formula from above:<br />

of air.<br />

Thus, a compressor map that has the capability of at least 44<br />

pounds per minute of airflow capacity is a good starting point.<br />

Note that nowhere in this calculation did we enter any engine<br />

displacement or RPM numbers. This means that for any engine,<br />

in order to make 400 HP, it needs to flow about 44 lb/min (this<br />

assumes that BSFC remains constant across all engine types).<br />

Naturally, a smaller displacement engine will require more boost or<br />

higher engine speed to meet this target than a larger engine will. So<br />

how much boost pressure would be required?<br />

10 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbo Selection - Gas<br />

Calculate manifold pressure required to meet the Horsepower, or<br />

flow target:<br />

Where:<br />

· MAPreq = Manifold Absolute Pressure (psia) required to meet the<br />

horsepower target<br />

· Wa = Airflow actual(lb/min)<br />

· R = Gas Constant = 639.6<br />

· Tm = Intake Manifold Temperature (degrees F)<br />

· VE = Volumetric Efficiency<br />

· N = Engine speed (RPM)<br />

· Vd = engine displacement (Cubic Inches, convert from liters to CI<br />

by multiplying by 61.02, ex. 2.0 liters * 61.02 = 122 CI)<br />

EXAMPLE:<br />

To continue the example above, let’s consider a 2.0 liter engine<br />

with the following description:<br />

· Wa = 44 lb/min as previously calculated<br />

· Tm = 130 degrees F<br />

· VE = 92% at peak power<br />

· N = 7200 RPM<br />

· Vd = 2.0 liters * 61.02 = 122 CI<br />

= 41.1 psia (remember, this is<br />

Absolute Pressure. Subtract Atmospheric Pressure to get Gauge<br />

Pressure (aka boost):<br />

41.1 psia – 14.7 psia (at sea level) = 26.4 psig boost<br />

As a comparison let’s repeat the calculation for a larger<br />

displacement 5.0L (4942 cc/302 CI) engine.<br />

Where:<br />

· Wa = 44 lb/min as previously calculated<br />

· Tm = 130 degrees F<br />

· VE = 85% at peak power (it is a pushrod V-8)<br />

· N = 6000 RPM<br />

· Vd = 4.942*61.02= 302 CI<br />

= 21.6 psia (or 6.9 psig boost)<br />

This example illustrates that in order to reach the horsepower<br />

target of 400 hp, a larger engine requires lower manifold pressure<br />

but still needs 44lb/min of airflow. This can have a very significant<br />

effect on choosing the correct compressor.<br />

With Mass Flow and Manifold Pressure, we are nearly ready to<br />

plot the data on the compressor map. The next step is to determine<br />

how much pressure loss exists between the compressor and the<br />

manifold. The best way to do this is to measure the pressure<br />

drop with a data acquisition system, but many times that is not<br />

practical.<br />

Depending upon flow rate, charge air cooler characteristics,<br />

piping size, number/quality of the bends, throttle body restriction,<br />

etc., the plumbing pressure drop can be estimated. This can be 1<br />

psi or less for a very well designed system. On certain restrictive<br />

OEM setups, especially those that have now higher-than-stock<br />

airflow levels, the pressure drop can be 4 psi or greater.<br />

For our examples we will assume that there is a 2 psi loss. So to<br />

determine the Compressor Discharge Pressure (P2c), 2 psi will be<br />

added to the manifold pressure calculated above.<br />

Where:<br />

· P2c = Compressor Discharge Pressure (psia)<br />

· MAP = Manifold Absolute Pressure (psia)<br />

· ΔPloss = Pressure Loss Between the Compressor and the<br />

Manifold (psi)<br />

For the 2.0 L engine:<br />

For the 5.0 L engine:<br />

= 43.1 psia<br />

= 23.6 psia<br />

Remember our discussion on inlet depression in the Pressure<br />

Ratio discussion earlier, we said that a typical value might be 1 psi,<br />

so that is what will be used in this calculation. For this example,<br />

assume that we are at sea level, so Ambient Pressure is 14.7<br />

psia.<br />

We will need to subtract the 1 psi pressure loss from the ambient<br />

pressure to determine the Compressor Inlet Pressure (P1).<br />

Where:<br />

· P1c = Compressor Inlet Pressure (psia)<br />

· Pamb = Ambient Air Pressure (psia)<br />

· ΔPloss = Pressure Loss due to Air Filter/Piping (psi)<br />

P1c = 14.7 - 1 = 13.7 psia<br />

With this, we can calculate Pressure Ratio ( ) using the<br />

equation.<br />

For the 2.0 L engine: = 3.14<br />

For the 5.0 L engine: = 1.72<br />

We now have enough information to plot these operating points<br />

on the compressor map. First we will try a GT2860RS. This turbo<br />

has a 60mm, 60 trim compressor wheel.<br />

Clearly this<br />

c o m p r e s s o r<br />

is too small,<br />

as both points<br />

are positioned<br />

far to the right<br />

and beyond the<br />

c o m p r e s s o r ’s<br />

choke line.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

11


Turbo Selection - Gas<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

Another potential<br />

candidate might<br />

be the <strong>Garrett</strong> ®<br />

GT3076R. This<br />

turbo has a 76mm,<br />

56 trim compressor<br />

wheel.<br />

This is much<br />

better; at least both<br />

points are on the<br />

map! Let’s look at<br />

each point in more<br />

detail.<br />

For the 2.0L<br />

engine this point is<br />

in a very efficient<br />

area of the map,<br />

but since it is in the<br />

center of the map,<br />

there would be a<br />

concern that at lower<br />

engine speeds that it would be near or over the surge line. This<br />

might be ok for a high-rpm-biased powerband that might be used<br />

on a racing application, but a street application would be better<br />

served by a different compressor.<br />

For the 5.0L engine, this looks like a very good street-biased<br />

powerband, with the lower engine speeds passing through the<br />

highest efficiency zone on the map, and plenty of margin to stay<br />

clear of surge. One area of concern would be turbo overspeed when<br />

revving the engine past peak power. A larger compressor would<br />

place the operating<br />

point nearer to the<br />

center of the map<br />

and would give some<br />

additional benefit to<br />

a high-rpm-biased<br />

powerband. We’ll<br />

look at a larger<br />

compressor for the<br />

5.0L after we figure<br />

out a good street<br />

match for the 2.0L<br />

engine.<br />

So now lets look at<br />

a <strong>Garrett</strong> ® GT3071R,<br />

which uses a 71mm,<br />

56 trim compressor<br />

wheel.<br />

For the 2.0L<br />

engine, this is a better<br />

mid-range-oriented<br />

compressor. The operating point is shifted a bit towards the choke<br />

side of the map and this provides additional surge margin. The<br />

lower engine speeds will now pass through the higher efficiency<br />

zones and give excellent performance and response.<br />

For the 5.0L engine, the compressor is clearly too small and<br />

would not be considered.<br />

Now that we have arrived at an acceptable compressor for the<br />

2.0L engine, lets calculate a lower rpm point to plot on the map to<br />

better get a feel for what the engine operating line will look like. We<br />

can calculate this using the following formula:<br />

We’ll choose the engine speed at which we would expect to see<br />

peak torque, based on experience or an educated guess. In this<br />

case we’ll choose 5000rpm.<br />

Where:<br />

· Wa = Airflow actual (lb/min)<br />

· MAP = Manifold Absolute Pressure (psia) =41.1 psia<br />

· R = Gas Constant = 639.6<br />

· Tm = Intake Manifold Temperature (degrees F) =130<br />

· VE = Volumetric Efficiency = 0.92<br />

· N = Engine speed (RPM) = 5000rpm<br />

· Vd = engine displacement (Cubic Inches, convert from liters to CI<br />

by multiplying by 61, ex. 2.0 liters * 61 = 122 CI)<br />

= 34.1 lb/min<br />

Plotting this on the GT3071R compressor map demonstrates the<br />

following operating points.<br />

This provides a good<br />

representation of the<br />

operating line at that<br />

boost level, which is<br />

well suited to this map.<br />

At engine speeds lower<br />

than 5000 rpm the boost<br />

pressure will be lower,<br />

and the pressure ratio<br />

would be lower, to keep<br />

the compressor out of<br />

surge.<br />

Back to the 5.0L<br />

engine. Let’s look at<br />

a larger compressor’s<br />

map. This time we<br />

will try a GT3582R<br />

with an 82mm, 56 trim<br />

compressor.<br />

Here, compared to<br />

the GT3076R, we can<br />

see that this point is not<br />

quite so deep into choke<br />

and will give better highrpm<br />

performance than<br />

the 76mm wheel. A<br />

further increase in wheel<br />

size would provide<br />

even better high-rpm<br />

performance, but at the<br />

cost of low- and midrange<br />

response and<br />

drivability.<br />

Hopefully this<br />

provided a basic idea of<br />

what a compressor map<br />

displays and how to<br />

choose a compressor. If<br />

real data is available to<br />

be substituted in place of estimation, more accurate results can<br />

be generated.<br />

12 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbo Selection -Diesel<br />

Today’s diesel engines represent the state of the art in technology<br />

with high power density, excellent drivability, and good fuel<br />

economy. Fortunately for the diesel enthusiast, they are easier<br />

to upgrade for additional performance and the aftermarket is<br />

responding with more options for your high performance needs.<br />

As the major air system component, the turbocharger is a vital part<br />

of the performance equation and choosing the right turbo is critical<br />

to meeting your performance targets.<br />

So why would I want to upgrade my Turbo Diesel engine?<br />

Better towing performance -- Maybe you bought your truck to tow<br />

that gooseneck for work, to get your 5th wheel to the next resort or<br />

your boat to the lake. It sure would be nice to get up to freeway<br />

speeds quickly and maintain highway speeds in hilly terrain. With<br />

the right upgrades, that can be done safely and efficiently.<br />

power target. Since turbochargers are sized by how much air they<br />

can deliver and airflow is proportional to engine power, a realistic<br />

horsepower goal is critical to make the right choice.<br />

The concept of a realistic goal needs to be stressed in order to<br />

ensure maximum performance and satisfaction. Sure, everyone<br />

would like to have a mega-horsepower vehicle but past a reasonable<br />

limit, as the power goes up, the reliability, drivability and day-to-day<br />

utility is diminished. Things are more likely to go wrong, wear out<br />

and break down as the power output climbs.<br />

Most project vehicles fall into one of the following general<br />

categories:<br />

Great, So what turbo do I choose?<br />

Competition Use -- More and more enthusiasts are interested in<br />

heavily modifying their vehicles for competition use. Some are<br />

weekend warriors that use their vehicles during the week for routine<br />

duty then go to the track on the weekends while others are building<br />

strictly race vehicles that give up streetability for the demands of<br />

the track.<br />

More fun -- For many, making modifications for increased<br />

performance is a way of personalizing the vehicle and to have a<br />

bit more fun with the daily drive. There is a satisfaction that comes<br />

from modifications that put you back into your seat a little harder<br />

when the light turns green. And, there are always the grudge<br />

matches at the local drag strip.<br />

What do I need to know to choose the right diesel upgrade<br />

turbocharger?<br />

The amount of power that a diesel engine makes is directly<br />

proportional to the amount of fuel injected into the cylinder and that<br />

fuel needs sufficient air for complete combustion. For smoke-free<br />

performance, the engine needs about 18 times more air (by mass)<br />

than fuel. So clearly, as more fuel is added, additional air needs<br />

to be added also. In most applications, the stock turbo has some<br />

additional capacity for increased power, but as the compressor<br />

reaches the choke limit (maximum flow), the turbo speed increases<br />

rapidly, the efficiency drops dramatically, and the compressor<br />

discharge temperature ramps up very quickly. This creates a<br />

“snowball” effect in that the higher discharge temps mean higher<br />

intake manifold temps and higher exhaust gas temps. The lower<br />

efficiency means that more turbine power is required to reach the<br />

same boost causing higher back pressure in the exhaust manifold.<br />

This can usually be seen on an engine with a performance chip<br />

(at the highest power setting) and maybe an intake or exhaust<br />

upgrade. Under heavy acceleration, smoke is pouring from the<br />

tailpipe as the EGT’s and turbo speeds are climbing into the danger<br />

zone requiring a prudent driver to back off the accelerator pedal<br />

early to keep from damaging the engine. Under these conditions,<br />

the stock turbo is running on borrowed time. With an upgrade<br />

turbocharger selected to compliment the extra fuel, smoke is<br />

drastically reduced, EGT’s are under control and, since the turbo<br />

is operating in a more efficient range, horsepower and drivability<br />

are enhanced. When the modifications get more serious, a bigger<br />

turbo is a must-have to compliment even more fuel.<br />

In order to decide on the appropriate turbocharger for your diesel<br />

engine, the very first thing that needs to be established is the<br />

Let’s take each case and calculate a turbo choice based on the<br />

intended power increase. The first step is to read the catalog<br />

section “Turbo Selection - Gasoline” (pages 8-11). This article<br />

explains the reading of a compressor map and the equations<br />

needed to properly match a turbo. The examples given, however,<br />

are for gasoline engines, so the additional examples here will be<br />

using those same equations but with a diesel engine. Matches<br />

will be calculated with an Air Fuel Ratio (AFR) of 22:1 for low or<br />

no smoke performance. Likewise a typical Brake Specific Fuel<br />

Consumption (BSFC) is in the range of 0.38. Let’s get started!<br />

The first example will be for the Daily Driver/Work Truck/Tow<br />

Vehicle category. This includes vehicles up to 150HP over stock.<br />

But wait, this power level can be accomplished with just a chip or<br />

tuning module. So why bother with a new upgrade turbo? An upgrade<br />

turbo will enhance the gains made by installing the chip and<br />

other upgrades. The extra air and lower backpressure provided<br />

by the upgrade turbo will lower EGTs, allow more power with less<br />

smoke and address durability issues with the stock turbo at higher<br />

boost pressures and power levels. Because this will be a mild<br />

upgrade, boost response and drivability will be improved across<br />

the board.<br />

EXAMPLE:<br />

I have a 6.6L diesel engine that makes a claimed 325 flywheel<br />

horsepower (about 275 wheel Horsepower as measured on a<br />

chassis dyno). I would like to make 425 wheel HP; an increase of<br />

150 wheel horsepower. Plugging these numbers into the formula<br />

and using the AFR and BSFC data from above:<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

13


Turbo Selection - Diesel<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

Recall from Turbo Selection - Gasoline:<br />

Where:<br />

Wa = Airflowactual (lb/min)<br />

HP = Horsepower Target<br />

= Air/Fuel Ratio<br />

= Brake Specific Fuel Consumption ( ) ÷ 60<br />

(to convert from hours to minutes)<br />

of air.<br />

So we will need to choose a compressor map that has a capability<br />

of at least 59.2 pounds per minute of airflow capacity. Next,<br />

how much boost pressure will be needed?<br />

Calculate the manifold pressure required to meet the horsepower<br />

target.<br />

Where:<br />

MAPreq = Manifold Absolute Pressure (psia) required to<br />

meet the horsepower target<br />

Wa = Airflowactual (lb/min)<br />

R = Gas Constant = 639.6<br />

Tm = Intake Manifold Temperature (degrees F)<br />

VE = Volumetric Efficiency<br />

N = Engine speed (RPM)<br />

Vd = engine displacement (Cubic Inches, convert from li<br />

ters to CI by multiplying by 61, ex. 2.0 liters*61 = 122 CI)<br />

For our project engine:<br />

Wa = 59.2 lb/min as previously calculated<br />

Tm = 130 degrees F<br />

VE = 98%<br />

N = 3300 RPM<br />

Vd = 6.6 liters * 61 = 400 CI<br />

To get the correct inlet condition, it is now necessary to estimate<br />

the air filter or other restrictions. In the Pressure Ratio discussion<br />

earlier we said that a typical value might be 1 psi, so that is what<br />

will be used in this calculation. Also, we are going to assume that<br />

we are at sea level, so we are going to use an ambient pressure<br />

of 14.7 psia. We will need to subtract the 1 psi pressure loss from<br />

the Ambient Pressure to determine the Compressor Inlet Pressure<br />

(P1).<br />

Where:<br />

P1c = Compressor Inlet Pressure (psia)<br />

Pamb = Ambient Air pressure (psia)<br />

Ploss = Pressure loss due to Air Filter/Piping (psi)<br />

= 13.7 psia<br />

With this, we can calculate Pressure Ratio (<br />

equation.<br />

For the 2.0L engine:<br />

) using the<br />

= 2.7<br />

We now have enough information to plot these operating points<br />

on the compressor map. First we will try a GT3788R. This turbo<br />

has an 88mm tip diameter 52 trim compressor wheel with a<br />

64.45mm inducer.<br />

As you can see, this point falls nicely on the map with some additional<br />

room for increased boost and mass flow if the horsepower<br />

target climbs. For this<br />

reason, the GT37R turbo<br />

family is applied on<br />

many of the <strong>Garrett</strong> ®<br />

PowerMax TM turbo kits<br />

that are sized for this<br />

horsepower range.<br />

= 34.5 psia (remember, this is Absolute Pressure; subtract Atmospheric<br />

Pressure to get Gauge Pressure, 34.5 psia – 14.7 psia (at<br />

sea level) = 19.8 psig).<br />

So now we have a Mass Flow and Manifold Pressure. We are<br />

almost ready to plot the data on the compressor map. Next step<br />

is to determine how much pressure loss exists between the compressor<br />

and the manifold. The best way to do this is to measure<br />

the pressure drop with a data acquisition system, but many times<br />

that is not practical. Depending upon flow rate and charge air cooler<br />

size, piping size and number/quality of the bends, throttle body<br />

restriction, etc., you can estimate from 1 psi (or less) up to 4 psi<br />

(or higher). For our examples we will estimate that there is a 2 psi<br />

loss. Therefore we will need to add 2 psi to the manifold pressure<br />

in order to determine the Compressor Discharge Pressure (P2c).<br />

Where:<br />

P2c = Compressor Discharge Pressure (psia)<br />

MAP = Manifold Absolute Pressure (psia)<br />

Ploss = Pressure loss between the Compressor and<br />

the Manifold (psi)<br />

= 36.5 psia<br />

For the next example,<br />

let’s look at the Weekend<br />

Warrior. This category<br />

is for daily driven<br />

vehicles that have up<br />

to 250 horsepower<br />

over stock or 525 wheel<br />

horsepower.<br />

Plugging that power<br />

target into our formula<br />

yields an airflow requirement of:<br />

And a pressure ratio of:<br />

of air flow.<br />

= 43.5 psia<br />

= 45.5 psia<br />

= 3.3<br />

14 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbo Selection - Diesel<br />

Looking at the previous map, the compressor does not flow<br />

enough to support this requirement, so we must look at the next<br />

larger size compressor. (Technically, the engine could probably<br />

easily make this power with the previous compressor, but it would<br />

be at risk of more smoke, higher EGT’s and backpressure; kind of<br />

like pushing a stock compressor too far…) The next larger turbo is<br />

a <strong>Garrett</strong> ® GT4094R. Another option that could also be considered<br />

is the GT4294R which has<br />

a slightly larger inducer<br />

compressor and the next<br />

larger frame size turbine<br />

wheel. The larger wheel’s<br />

inertia will slow down the<br />

response a bit, but provide<br />

better performance at the<br />

top end of the rpm range.<br />

For the next example,<br />

let’s look at the Extreme<br />

P e r f o r m a n c e . T h i s<br />

category is for real hot rod<br />

vehicles that have up to<br />

350 horsepower over stock<br />

and owners that are willing<br />

to give up some of the daily utility in order to achieve higher power<br />

gains.<br />

Plugging that power target into our formula yields an airflow<br />

requirement of:<br />

of air<br />

And a pressure ratio of :<br />

= 50.8 psia<br />

= 52.8 psia<br />

= 3.8<br />

For this flow and pressure ratio, the GT4202R is appropriate and<br />

is shown below. Since this is approaching a pressure ratio of 4-<br />

to-1, we are about at the limit of a single turbo on an engine of this<br />

size.<br />

Additional power gains can be had with more boost or a larger<br />

single turbo, but it is<br />

getting close to the edge<br />

of the envelope in terms of<br />

efficiency and turbo speed.<br />

The final case is the<br />

Competition category.<br />

Since this is a special case<br />

and there are so many ways<br />

to go about an ultimate<br />

power diesel application,<br />

it is not possible to cover it<br />

adequately in this article.<br />

There are, however, some<br />

general guidelines. At<br />

this power level, as stated<br />

above, it is a good idea<br />

to consider a series turbo<br />

application. This is a situation where one turbo feeds another turbo,<br />

sharing the work of compressing the air across both compressors.<br />

A larger turbo is designated as the “low-pressure” turbo and the<br />

smaller secondary stage as the “high pressure” turbo. The lowpressure<br />

compressor feeds the high-pressure compressor which<br />

then feeds the intake. On the turbine-side the exhaust first passes<br />

through the high-pressure turbine and then on to the low-pressure<br />

turbine before being routed out through the tailpipe. We can still<br />

calculate the required mass flow, but the pressure ratio is more<br />

involved and questions should be discussed with your local <strong>Garrett</strong> ®<br />

PowerMax TM distributor. To calculate the required mass flow, we<br />

use the normal equation. This time the power target will be 500<br />

wheel horsepower over stock, for a total of 775 wheel horsepower.<br />

of air flow.<br />

This air flow rate will apply only to the low-pressure compressor<br />

as the high-pressure compressor will be smaller because it is further<br />

pressurizing already compressed air. In most cases, the highpressure<br />

turbo tends to be about two frame sizes smaller than the<br />

low pressure stage. So in this case, after selecting the appropriate<br />

low-pressure turbo (hint: look at the GT4718R compressor map), a<br />

GT4088R or GT4094R would be the likely candidates.<br />

One more comment on<br />

choosing a properly sized<br />

turbine housing A/R. A<br />

smaller A/R will help the<br />

turbo come up on boost<br />

sooner and provide a better<br />

responding turbo application,<br />

but at the expense<br />

of higher back pressure in<br />

the higher rpm zones and,<br />

in some cases, a risk of<br />

pushing the compressor<br />

into surge if the boost rises<br />

too rapidly. On the other<br />

hand, a larger A/R will respond<br />

slower, but with better<br />

top end performance<br />

and reduced risk of running<br />

the compressor into<br />

surge. Generally speaking,<br />

the proper turbine housing<br />

is the largest one that<br />

will give acceptable boost<br />

response on the low end<br />

while allowing for more optimal<br />

top end performance.<br />

This information should<br />

be used as a starting point<br />

for making decisions on<br />

proper turbo sizing.<br />

For more specific<br />

information on your<br />

engine, consult a <strong>Garrett</strong> ®<br />

PowerMax TM Distributor.<br />

Find your <strong>Garrett</strong> ®<br />

PowerMax TM Distributor<br />

at<br />

www.TurboBy<strong>Garrett</strong>.com.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

15


Turbo System Optimization<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

This section is intended to cover many of the auxiliary systems in a<br />

more complete and in-depth manner. With this additional section, you<br />

will better understand how to optimize your turbo system.<br />

Turbo System Optimization will cover:<br />

1. Application Information<br />

2. Turbo Match<br />

3. System Components<br />

- Air Filter<br />

- Oil Supply & Drain<br />

- Water Lines<br />

- Charge Tubing & Charge-Air-Cooler<br />

- BOV<br />

- Wastegate<br />

4. Common Causes of Oil Leakage<br />

5. System Testing/Monitoring<br />

6. 11-Point Checklist<br />

1. Application Information<br />

The most important thing to understand before designing a system<br />

is the application. Is it going to be used for road racing, drag racing or<br />

drifting or maybe it will be primarily a street driven car. The intended use<br />

greatly affects the turbo selection as well as the system components. A<br />

turbo system that works well for a 9 second drag car is most likely not<br />

going to work well for a drift car or road race car.<br />

You need to have a target flywheel horsepower in mind. It will be used<br />

to help design the entire system.<br />

2. Turbo Match<br />

• Visit the Turbo Tech Section of www.TurboBy<strong>Garrett</strong>.com.<br />

• Or use the Turbo Selection sections of this catalog.<br />

• Using formulas in Turbo Selection, calculate mass flow and<br />

pressure ratio (PR) at redline for your specific application.<br />

• Plot mass flow and PR on several compressor maps to<br />

determine the best fit.<br />

• For the example in this presentation, the “application” will<br />

be a 400 flywheel hp street car using pump gas, therefore<br />

the estimated mass flow ~ 40 lbs/min<br />

3. System Components<br />

Air Filter<br />

It is important to appropriately size the air filter for the maximum flow<br />

rate of the application. For our specific example, we are looking for target<br />

face velocity of ≤130 ft/min at redline to minimize restriction so as to<br />

provide the turbo with all the air necessary for it to function optimally.<br />

If the turbo does not have access to the proper amount of air, excessive<br />

restriction can occur and cause:<br />

• Oil leakage from the compressor side piston ring, which<br />

results in oil loss, a fouled CAC and potentially smoke out<br />

of the tailpipe.<br />

• Increased pressure ratio, which can lead to turbo overspeed.<br />

• Overspeed will reduce turbo durability and could result in<br />

an early turbo failure.<br />

Determining the correct air filter size<br />

Example:<br />

Face Velocity = 130 ft/min<br />

Mass Flow = 40 lbs/min<br />

Air density = 0.076 lbs/ft 3<br />

Mass Flow (lbs/min)=Volumetric Flow Rate (CFM) x Air Density (lbs/ft 3 )<br />

Volumetric Flow Rate (CFM) = Mass Flow (lbs/min)<br />

Air Density (lbs/ft 3 )<br />

Volumetric Flow Rate = 526 CFM<br />

**For twin turbo setups, simply divide the flow rate by two.<br />

Face Velocity (ft/min) = Volumetric Flow rate (CFM) / Area (ft 2 )<br />

Area (ft 2 ) = Volumetric Flow rate (CFM) / Face Velocity (ft/min)<br />

Area (ft 2 ) = 526 / 130 = 4.05<br />

Area (in 2 ) = 4.05 x 144<br />

Area = 582 in 2<br />

Now that we know the required surface area that our air filter must have,<br />

we need to determine the correct air filter size using information provided by<br />

the filter manufacturer. We will need to know the following information about<br />

the filters we are considering:<br />

• Pleat height<br />

• Pleat depth<br />

• Number of pleats<br />

Example:<br />

Pleat Height = 9.00 in.<br />

Pleat Depth = 0.55 in.<br />

# of Pleats = 60<br />

Area (in 2 ) = pleat height x pleat depth x # of pleats x 2<br />

Area (in 2 ) = 9.00 x 0.55 x 60 x 2<br />

Area = 594 in 2<br />

Actual Filter Area (594 in 2 ) > Calculated Area (582 in 2 )<br />

Since the actual filter area (594 in 2 ) is greater than the required area, this<br />

air filter will work for our application.<br />

Oil Supply & Drainage<br />

Journal Bearing Turbo<br />

Journal-bearings function similarly to rod or crank bearings in an engine:<br />

oil pressure is required to keep components separated. An oil restrictor is<br />

generally not needed except for oil pressure-induced leakage.<br />

The recommended oil feed for journal bearing turbochargers is -4AN or<br />

hose/tubing with an ID of approximately 0.25”.<br />

Be sure to use an oil filter that meets or exceeds the OEM specifications.<br />

Ball Bearing Turbo<br />

An oil restrictor is recommended for optimal performance with ball bearing<br />

turbochargers. Oil pressure of 40 – 45 psi at maximum engine speed is<br />

recommended to prevent damage to the turbocharger’s internals. In order to<br />

achieve this pressure, a restrictor with a 0.040” orifice will normally suffice,<br />

but you should always verify the oil pressure entering the turbo after the restrictor<br />

in insure that the components are functioning properly.<br />

Recommended oil feed is -3AN or -4AN line or hose/tubing with a similar ID.<br />

As always, use an oil filter that meets or exceeds the OEM specifications.<br />

OIL LEAKAGE SHOULD NOT OCCUR ON A PROPERLY FUNCTION-<br />

ING SYSTEM IF RESTRICTOR IS NOT USED UNLESS THE SYSTEM<br />

PRESSURE IS EXCESSIVELY HIGH.<br />

Oil Drain<br />

In general, the larger the oil drain, the better. However, a -10AN is typically<br />

sufficient for proper oil drainage, but try not to have an inner diameter smaller<br />

than the drain hole in the housing as this will likely cause the oil to back up<br />

in the center housing. Speaking of oil backing up in the center housing, a<br />

gravity feed needs to be just that! The oil outlet should follow the direction of<br />

gravity +/-35° when installed in the vehicle on level ground. If a gravity feed<br />

is not possible, a scavenge pump should be used to insure that oil flows freely<br />

away from the center housing.<br />

Avoid:<br />

• Undulations in the line or extended lengths parallel to the ground<br />

• Draining into oil pan below oil level<br />

• Dead heading into a component behind the oil pan<br />

• Area behind the oil pan (windage tray window) where oil sling<br />

occurs from crankshaft<br />

When installing your turbocharger, insure that the turbocharger axis of rotation<br />

is parallel to the level ground within +/- 15°. This means that the oil<br />

inlet/outlet should be within 15° of being perpendicular to level ground.<br />

Water Lines<br />

Water cooling is a key design feature for improved durability and we recommend<br />

that if your turbo has an allowance for water-cooling, hook up the<br />

water lines. Water cooling eliminates the destructive occurrence of oil coking<br />

by utilizing the Thermal Siphon Effect to reduce the Peak Heat Soak Back<br />

Temperature on the turbine side after shut-down.<br />

In order to get the greatest benefit from your water-cooling system, avoid<br />

undulations in the water lines to maximize the Thermal Siphon Effect.<br />

16 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbo System Optimization<br />

• Available packaging space in the vehicle usually dictates<br />

certain designs<br />

Selecting a Charge Air Cooler (aka intercooler) has been made simple<br />

with www.TurboBy<strong>Garrett</strong>.com ‘s intercooler core page. Each core is rated<br />

for horsepower, making it as easy as matching your desired power target<br />

to the core. In general, use the largest core that will fit within the packaging<br />

constraints of the application.<br />

Negative degrees: water outlet of center housing is lower than water inlet<br />

Positive degrees: water outlet of center housing is higher than water inlet<br />

For our example:<br />

Another important factor in selecting the correct intercooler is the end tank<br />

design. Proper manifold shape is critical in both minimizing charge air pressure<br />

drop and providing uniform flow distribution. Good manifold shapes minimize<br />

losses and provide fairly even flow distribution. The over-the-top design<br />

can starve the top tubes however. The side entry is ideal for both pressure<br />

drop and flow distribution, but it is usually not possible due to vehicle space<br />

limitations.<br />

For best results, set the orientation of the center housing to 20°.<br />

Significant damage to the turbo can occur from improper water line<br />

setups.<br />

Charge Tubing<br />

The duct diameter should be sized with the capability to flow approximately<br />

200 - 300 ft/sec. Selecting a flow diameter less than the calculated<br />

value results in the flow pressure dropping due to the restricted<br />

flow area. If the diameter is instead increased above the calculated<br />

value, the cooling flow expands to fill the larger diameter, which slows<br />

the transient response.<br />

For bends in the tubing, a good design standard is to size the bend<br />

radius such that it is 1.5 times greater than the tubing diameter.<br />

The flow area must be free of restrictive elements such as sharp transitions<br />

in size or configuration.<br />

For our example:<br />

• Tubing Diameter: velocity of 200 – 300 ft/sec is desirable.<br />

Too small a diameter will increase pressure drop.<br />

Too large can slow transient response.<br />

• Velocity (ft/min) = Volumetric Flow rate (CFM) / Area (ft 2 )<br />

Again, for twin turbo setups, divide the flow rate by (2).<br />

Charge tubing design affects the overall performance, so there are<br />

a few points to keep in mind to get the best performance from your<br />

system.<br />

• Duct bend radius:<br />

-Radius/diameter > 1.5<br />

• Flow area:<br />

-Avoid area changes, sharp transitions, shape changes<br />

Proper mounting of the intercooler increases the durability of the system.<br />

Air to air charge air coolers are typically “soft-mounted”, meaning they use<br />

rubber isolation grommets. This type of mounting is also used for the entire<br />

cooling module. The design guards against vibration failure by providing<br />

dampening of vibration loads. It also reduces thermal loads by providing for<br />

thermal expansion.<br />

Benefits of Isolation:<br />

• Guards against vibration by damping loads<br />

• Reduces thermal loading by providing for thermal expansion<br />

Blow Off Valves (BOV)<br />

Using the proper blow off valve (BOV) affects the system performance.<br />

There are two main types to consider.<br />

MAP (Manifold Absolute Pressure) sensor uses either a<br />

vent-to-atmosphere valve or a recirculation valve.<br />

- Connect signal line to manifold source<br />

- Surge can occur if spring rate is too stiff<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

17


Turbo System Optimization<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

MAF (Mass Air Flow) sensor uses a recirculation (bypass) valve for<br />

best drivability.<br />

- Connect signal line to manifold source<br />

- Position valve close to the turbo outlet for<br />

best performance (if valve can handle<br />

high temp).<br />

- Surge can occur if valve and/or outlet plumbing are restrictive.<br />

Wastegates<br />

Internal wastegates are part of the turbo and integrated<br />

into the turbine housing. Two connection possibilities exist<br />

for signal line. The first is to connect line from compressor<br />

outlet (not manifold - vacuum) to the actuator. The second is<br />

to connect a line from compressor outlet to boost controller<br />

(PWM valve) and then to the actuator.<br />

Manifold pressure is limited by the spring rate of the<br />

actuator.<br />

Most OEM style actuators are not designed for vacuum,<br />

and thus, the diaphragm can be damaged resulting in excessive<br />

manifold pressure and engine damage.<br />

External wastegates are separate from the turbo and<br />

integrated into the exhaust manifold rather than the turbine<br />

housing.<br />

Connection to the manifold greatly affects flow capability,<br />

and correct orientation of the wastegate to the manifold<br />

is essential. For example, placing the wastegate at 90° to<br />

the manifold will reduce flow capacity by up to 50%! This<br />

greatly reduces the control that you have over the system<br />

and puts your entire drivetrain at risk. Instead, the ideal<br />

connection is at 45° with a smooth transition.<br />

There are two connection possibilities for signal line:<br />

• Connect a line from the compressor outlet<br />

(not manifold - vacuum) to the actuator<br />

• Connect a line from the compressor outlet to a boost<br />

controller (PWM valve) and then to the actuator<br />

Again, manifold pressure is limited by spring rate of actuator.<br />

4. Common Causes of Oil Leakage<br />

A properly installed turbo should NOT leak oil.<br />

There are, however, instances where oil leaks occur. The most<br />

common causes, depending on the location of the leak, are:<br />

Leakage from compressor and turbine seals<br />

- Excessively high oil pressure<br />

- Inadequate drain – drain is too small, does not go<br />

continuously downhill, drain is below the oil level in the pan<br />

or the location of the drain inside the<br />

oil pan is located in a section that has oil slung from the<br />

crank causing oil to back up in drain tube. Always place<br />

oil drain into oil pan in a location that oil from crank is<br />

blocked by windage tray.<br />

- Improper venting of crankcase pressure.<br />

- Excessive crankcase pressure.<br />

- Oil drain rotated past the recommended 35°.<br />

Leakage from compressor seal<br />

Excessive pressure across the compressor housing inlet caused<br />

by:<br />

- Air filter is too small.<br />

- Charge air tubing too small or has too many bends<br />

between the air filter and compressor housing .<br />

- Clogged air filter.<br />

Leakage from Turbine seal<br />

- Collapsed turbine piston ring from excessive EGT’s.<br />

- Turbo tilted back on its axis past recommended 15°.<br />

5. System Testing and Monitoring<br />

Testing<br />

Many problems with turbo systems can be solved before the catastrophic<br />

happens through simple system testing.<br />

Pressurize system to test for leaks<br />

• Clamps<br />

-Check tightness<br />

• Couplers<br />

- Check for holes or tears<br />

• CAC core / end tanks<br />

- Check for voids in welds<br />

Monitoring<br />

The turbo system in your car should be monitored to insure that every aspect<br />

is functioning properly to give you trouble-free performance.<br />

Instrumentation used to monitor / optimize system<br />

1. Oil Pressure (Required to monitor engine operation)<br />

2. Oil Temperature (Required to monitor engine operation)<br />

3. Water Temperature (Required to monitor engine operation)<br />

4. A/F Ratio (such as a wideband sensor; required to monitor<br />

engine operation)<br />

5. Manifold Pressure<br />

6. Turbine Inlet Pressure<br />

7. Exhaust Gas Temperature<br />

8. Turbo Speed Sensor<br />

• The most accurate way to calibrate and optimize a<br />

system is through datalogging!<br />

Manifold Pressure<br />

- Calibrate actuator setting to achieve manifold pressure<br />

required to meet hp target<br />

- Detect over-boost condition<br />

- Detect damaged actuator diaphragm<br />

Back Pressure<br />

- Monitor pressure changes in turbine housing inlet<br />

- Affect of different turbine housing A/R’s<br />

- Increased back pressure decreases Volumetric Efficiency<br />

thus decreasing ultimate power<br />

Pyrometer<br />

- Monitor exhaust gas temperature (EGT) in manifold / turbine housing<br />

- Adjust calibration based on temperature rating of turbine<br />

housing material or other exhaust components<br />

Turbo Speed<br />

- Determine operating points on compressor map<br />

- Determine if the current turbo is correct for the application<br />

and target hp<br />

- Avoid turbo over-speed condition, which could damage turbo<br />

6. 11 Point Checklist<br />

1. Application Information – target horsepower, intended use of<br />

vehicle, etc.<br />

2. Air filter sizing - determine size for application needs<br />

3. Oil Supply - restrictor for ball-bearing turbo<br />

4. Oil Drain – proper size and routing<br />

5. Water Lines - set up for greatest thermal siphon effect<br />

6. Charge Tubing – determine diameter for application needs<br />

7. Charge-Air-Cooler - determine core size for application needs,<br />

design manifolds for optimal flow, mount for durability<br />

8. BOV – VTA for MAP engines and by-pass for MAF engines<br />

9. Wastegate – connect signal line to compressor outlet, smooth<br />

transition to external wastegate<br />

10. System Testing – pressurize system to check for leakage,<br />

periodically check clamp tightness and the condition of couplers<br />

11. System Monitoring – proper gauges/sensors to monitor engine for<br />

optimal performance and component durability<br />

18 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Troubleshooting<br />

Troubleshooting<br />

Nearly all turbocharger-related problems are the result of a handful of causes. Knowing how to recognize the<br />

symptoms of these issues early and link them with causes will help you save (down) time and money.<br />

The chart below outlines the probable causes and noticeable conditions of the most common turbocharger maladies<br />

as well as what you can do to solve them.<br />

By using this chart, most turbocharger problems can be easily identified and rectified. However, if a problem falls outside of<br />

your comfort level for service, contact a <strong>Garrett</strong> ® Performance Distributor or a <strong>Garrett</strong> ® Master Distributor for assistance.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

19


Displacement Chart<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

<strong>Garrett</strong> ® Turbocharger Displacement Chart<br />

Chart represents approximations. See your <strong>Garrett</strong> ® distributor for proper sizing.<br />

20 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbochargers<br />

TU<strong>RB</strong>OCHARGERS<br />

Proven performance<br />

The <strong>Garrett</strong> ® dual ball bearing cartridge has proven its worth in the highest level of motorsports where it has been the<br />

bearing system of choice in everything from the 24 Hours of Le Mans to drag racing. These premier racing customers<br />

demand no less than the best in durability, reliability, and power on demand. One key contributor to this performance lies in<br />

the ball bearing cartridge where it is, by design, surrounded by a thin film of oil. The oil film damps out destructive vibrations<br />

that would otherwise compromise turbo durability.<br />

A clear demonstration of the inherent superiority of the <strong>Garrett</strong> ® ball bearing design is in the launch of a turbocharged drag<br />

race car. The two-step rev limiters used to build boost on the line expose the turbo to the harshest imaginable conditions of<br />

pressure spikes and scorching temperatures. Where lesser turbos often fail catastrophically, <strong>Garrett</strong> ® ball bearing turbos<br />

regularly shrug off these brutal conditions time after time. In fact, many drag racers running <strong>Garrett</strong> ® ball bearing turbos<br />

have not needed to rebuild or replace their turbos for multiple seasons. Can you say that about your turbo?<br />

Combined with the aerodynamically advanced <strong>Garrett</strong> ® GT and all-new GTX wheel designs, <strong>Garrett</strong> ® ball bearing turbos<br />

provide improved drivability and power on demand.<br />

<strong>Garrett</strong> ® GT & GTX-Series Turbochargers - the standard by which all others are judged.<br />

Small Frame<br />

GT12 - GT15 - GT20 - GT22<br />

The fun starts here. A range of<br />

modern wastegated turbochargers<br />

ideally suited for small-displacement<br />

applications including motorcycles,<br />

snowmobiles and more.<br />

Medium Frame<br />

GT25 - GT28 - GT30 - GTX30- GT32<br />

- GT35 - GTX35<br />

A huge selection of journal bearing<br />

turbos, housing options, and our<br />

proven, patented ball-bearing turbos.<br />

Wastegated or free-floating; from<br />

the quick-spooling GT2560R to the<br />

competition-crushing GTX3582R,<br />

you’ll find your best options here<br />

whether you want 170 hp or 600 hp.<br />

Large Frame<br />

GT37 - GT40 - GT42 - GTX42 - GT45<br />

- GTX45 - GT47 - GT55 - GT60<br />

Best suited for large-displacement<br />

engines, drag racing vehicles,<br />

and other applications that require<br />

significant airflow. There are<br />

wastegated or free-floating units here,<br />

plus our exclusive large-frame<br />

ball-bearing CHRAs.<br />

Using the <strong>Garrett</strong> ® Turbo <strong>Catalog</strong><br />

This catalog provides images and descriptions of a representative of each family in the <strong>Garrett</strong> ® lineup. Compressor maps<br />

are provided to assist in sizing your <strong>Garrett</strong> ® turbo to your engine and turbine maps are provided at www.TurboBy<strong>Garrett</strong>.<br />

com. This guide also gives you the inlet and outlet geometry drawings for every turbo represented. Be aware that some<br />

turbo family members not appearing in this catalog may have different flanges. References to these drawings are found in<br />

the Flange Dimensions table on each page and are linked to the Sizes & Dimensions index beginning on page 47 by the<br />

numbering system of page number - drawing number.<br />

Ball Bearing ServiceProgram<br />

A great deal of pride is taken in the quality of <strong>Garrett</strong> ® turbochargers and they are tested extensively. However, sometimes<br />

the unthinkable happens and a turbo fails. There is now an option for the exchange of a failed or used <strong>Garrett</strong> ®<br />

CHRA on credit toward a new CHRA at an affordable price!<br />

The program requires you take the following steps:<br />

1. Make sure your unit is covered by the program by contacting a <strong>Garrett</strong> ® Performance Distributor.<br />

2. Send your damaged CHRA* to a <strong>Garrett</strong> ® Performance Distributor for inspection.<br />

3. Purchase a new CHRA at a discounted price!<br />

*At a minimum, the center housing must be re-usable to qualify for this program. The <strong>Garrett</strong> ® Performance Distributor will determine the condition upon<br />

receiving the CHRA and has final say in the applicability of a CHRA for this program.<br />

Visit www.TurboBy<strong>Garrett</strong>.com to see the entire <strong>Garrett</strong> ® GT-Series and GTX-Series line of turbochargers<br />

and to get the latest turbo product, tutorials and racing updates.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

21


GT1241<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 50 - 130<br />

DISPLACEMENT 0.4L - 1.2L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 13 82 09<br />

Turbine 83 07 85 02<br />

Oil 84 10 84 10<br />

Water 86 12 86 12<br />

• Journal bearing, oil & water-cooled CHRA<br />

• Smallest <strong>Garrett</strong> ® turbocharger available<br />

• Excellent for motorcycles or other small<br />

displacement engines<br />

• Internally wastegated turbine housing, complete<br />

with actuator<br />

GT1241 COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

756068-1 757864-1 29.0mm 41.0mm 50 0.33 35.5mm 72 0.43<br />

22 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT1544<br />

• Journal bearing, oil-cooled CHRA<br />

• Internally wastegated turbine housing<br />

complete with actuator<br />

• Three bolt 34mm turbine inlet<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 12 See Note<br />

Turbine See Note 85 05<br />

Oil See Note 84 16<br />

Water - - - -<br />

GT1544<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

454082-2 433289-116 32.9mm 43.9mm 56 0.33 42.2mm 58 0.34<br />

454083-2 433289-50 32.9mm 43.9mm 56 0.33 42.2mm 58 0.35<br />

DISPLACEMENT 1.0L - 1.6L<br />

HORSEPOWER 100 - 150<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Dimension Note:<br />

Compressor Outlet: 454082-2: Page 82, Diagram 11<br />

454083-2: Page 82, Diagram 10<br />

Turbine Inlet: 454082-2: Page 83, Diagram 08<br />

454083-2: Page 83, Diagram 09<br />

Oil inlet:<br />

Both PN - M10x1.0 (F) or M14x1.5 (M)<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

23


GT1548<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 100 - 200<br />

DISPLACEMENT 1.0L - 1.6L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 15 82 15<br />

Turbine 83 01 85 03<br />

Oil 84 11 84 15<br />

Water 86 13 86 13<br />

• Journal bearing, oil & water-cooled CHRA<br />

• Internally wastegated turbine housing, complete<br />

with actuator<br />

• Excellent for motorcycles and other small<br />

displacement engines<br />

GT1548 COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

466755-3 431876-93 37.2mm 48.0mm 60 0.48 41.2mm 72 0.35<br />

24 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2052<br />

• Journal bearing, oil-cooled CHRA<br />

• Internally wastegated turbine housing,<br />

complete with actuator<br />

• Two orientations available<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 20 82 15<br />

Turbine 83 06 85 01<br />

Oil See Note 84 16<br />

Water - - - -<br />

GT2052<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

727264-1 451298-43 37.6mm 52.2mm 52 0.51 47.0mm 72 0.50<br />

727264-2 451298-43 37.6mm 52.2mm 52 0.51 47.0mm 72 0.50<br />

DISPLACEMENT 1.4L - 2.0L<br />

HORSEPOWER 140 - 230<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Dimension Note:<br />

Oil inlet: Both PN - M10x1.0 (F) or M10x1.0 (M)<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

25


GT2052<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 140 - 220<br />

DISPLACEMENT 1.4L - 2.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 20 82 15<br />

Turbine 83 06 85 01<br />

Oil See Note 84 16<br />

Water - - - -<br />

• Journal bearing, oil-cooled CHRA<br />

• Internally wastegated turbine housing, complete<br />

with actuator<br />

• Two orientations available<br />

GT2052<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

727264-4 451298-45 36.8mm 52.0mm 50 0.51 47.0mm 72 0.50<br />

727264-5 451298-45 36.8mm 52.0mm 50 0.51 47.0mm 72 0.50<br />

Dimension Note:<br />

Oil Inlet: Both PN - M10x1.0 (F) or M10x1.0 (M)<br />

26 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2052<br />

• Journal bearing, oil-cooled CHRA<br />

• Internally wastegated turbine housing,<br />

complete with actuator<br />

• Two orientations available<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 20 82 15<br />

Turbine 83 06 85 01<br />

Oil See Note 84 16<br />

Water - - - -<br />

GT2052<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

727264-3 451298-44 36.1mm 52.2mm 48 0.51 47.0mm 72 0.50<br />

727264-7 451298-44 36.1mm 52.2mm 48 0.51 47.0mm 72 0.50<br />

DISPLACEMENT 1.4L - 2.0L<br />

HORSEPOWER 140 - 210<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Dimension Note:<br />

Oil Inlet: Both PN - M10x1.0 (F) or M10x1.0 (M)<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

27


GT2056<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 140 - 260<br />

DISPLACEMENT 1.4L - 2.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 18 82 16<br />

Turbine 83 03 85 08<br />

Oil See Note 84 16<br />

Water - - - -<br />

• Journal bearing, oil-cooled CHRA<br />

• Internally wastegated turbine housing, complete<br />

with actuator<br />

GT2056<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

751578-2 433289-234 41.5mm 56.0mm 55 0.53 47.0mm 72 0.46<br />

Dimension Note:<br />

Oil Inlet: Both PN - M10x1.0 (F) or M14x1.5 (M)<br />

28 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2252<br />

• Journal bearing, oil-cooled CHRA<br />

• Internally wastegated turbine housing,<br />

complete with actuator<br />

• Free float turbine housing (451503-1)<br />

option available<br />

• Extremely efficient turbo<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 21 82 15<br />

Turbine 83 01 85 10<br />

Oil See Note 84 16<br />

Water - - - -<br />

DISPLACEMENT 1.7L - 2.5L<br />

HORSEPOWER 150 - 260<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT2252 COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

452187-6 451298-6 40.2mm 52.0mm 60 0.51 50.3mm 72 0.67<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

451503-1 0.56<br />

Dimension Note:<br />

Oil Inlet: Both PN - M10x1.0 (F) or M10x1.0 (M)<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

29


GT2259<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 160 - 280<br />

DISPLACEMENT 1.7L - 2.5L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 22 82 05<br />

Turbine 83 01 85 06<br />

Oil See Note 84 16<br />

Water - - - -<br />

• Journal bearing, oil-cooled CHRA<br />

• Free floating, non-wastegated turbine housing<br />

• Internally wastegated turbine housing available<br />

(PN 436313-6)<br />

• Extremely efficient turbo<br />

GT2259<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

452214-3 451298-9 42.8mm 59.4mm 52 0.42 50.3mm 72 0.56<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

436313-6 0.67<br />

Dimension Note:<br />

Oil Inlet: Both PN - M10x1.0 (F) or M14x1.0 (M)<br />

30 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2554R<br />

• Dual ball bearing, oil & water-cooled CHRA<br />

• Internally wastegated turbine housing,<br />

complete with actuator<br />

• Smallest ball bearing turbocharger<br />

• Great size for applications with packaging<br />

constraints<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 22 82 04<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

DISPLACEMENT 1.4L - 2.2L<br />

HORSEPOWER 170 - 270<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT2554R COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

471171-3 446179-24 42.1mm 54.3mm 60 0.80 53.0mm 62 0.64<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

31


GT2560R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 200 - 330<br />

DISPLACEMENT 1.6L - 2.5L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 02 82 04<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing complete with<br />

actuator<br />

Turbine housing is cast from high-nickel “Ni-Resist”<br />

material (466541-4 only)<br />

Turbine wheel is cast from “Inconel” material for extreme<br />

applications (466541-4 only)<br />

OEM turbocharger on Nissan SR20DET engine<br />

Upgrade for GT2554R (471171-3), outline interchangeable<br />

•<br />

•<br />

•<br />

•<br />

except compressor inlet<br />

GT2560R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

466541-1 446179-12 46.5mm 60.1mm 60 0.60 53.0mm 62 0.64<br />

466541-4 446179-38 46.5mm 60.1mm 60 0.60 53.0mm 62 0.64<br />

32 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2854R<br />

• Dual ball bearing, oil & water-cooled CHRA<br />

• Internally wastegated turbine housing, complete with<br />

actuator<br />

• Turbine housing is cast from high-nickel “Ni-Resist”<br />

material<br />

• Turbine wheel is cast from “Inconel” material for extreme<br />

applications<br />

• Similar to GT2554R (471171-3) except for slightly larger<br />

turbine wheel, different turbine housing and wheel<br />

materials<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 22 82 04<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

DISPLACEMENT 1.4L - 2.2L<br />

HORSEPOWER 170 - 270<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT2854R COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

471171-9 446179-47 42.1mm 54.3mm 60 0.80 53.9mm 62 0.64<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

33


GT2859R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 150 - 310<br />

DISPLACEMENT 1.8L - 3.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 02 82 01<br />

Turbine 83 02 85 09<br />

Oil 84 11 84 15<br />

Water 86 13 86 13<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing; 780371-1<br />

complete with actuator, 707160-9 does NOT include<br />

actuator<br />

Turbine housing has a unique “compact” 5-bolt<br />

outlet that is not interchangeable with traditional<br />

T25 5-bolt outlets<br />

Turbine housing cast from high-nickel “Ni-Resist”<br />

material<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

Bolt-on upgrade for Nissan <strong>RB</strong>26DETT<br />

•<br />

•<br />

•<br />

•<br />

GT2859R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

780371-1 446179-65 44.5mm 59.4mm 56 0.42 53.9mm 62 0.64<br />

707160-9 446179-65 44.5mm 59.4mm 56 0.42 53.9mm 62 0.64<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-230* 0.64<br />

430609-231* 0.86<br />

* Note: allows turbo to be outline interchangeable with other turbos using the<br />

traditional 5-bolt turbine housing (Diagram 85-11) Housing fits over turbine<br />

wheel but actuator/wastegate fitment may need to be adjusted<br />

34 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2860R<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing complete with<br />

actuator<br />

Turbine housing has a unique “compact” 5-bolt outlet<br />

that is not interchangeable with traditional T25 5-bolt<br />

outlets<br />

Turbine housing cast from high-nickel “Ni-Resist”<br />

material<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

Bolt-on turbo for Nissan <strong>RB</strong>26DETT<br />

•<br />

•<br />

•<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 02 82 01<br />

Turbine 83 02 85 09<br />

Oil 84 11 84 15<br />

Water 86 13 86 13<br />

DISPLACEMENT 1.8L - 3.0L<br />

HORSEPOWER 150 - 310<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT2860R COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

707160-7 446179-54 44.6mm 60.1mm 55 0.42 53.9mm 62 0.64<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

35


GT2860R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 250 - 360<br />

DISPLACEMENT 1.8L - 3.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 02 82 01<br />

Turbine 83 02 85 09<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing complete with<br />

actuator<br />

Turbine housing has a unique “compact” 5-bolt<br />

outlet that is not interchangeable with traditional<br />

T25 5-bolt outlets<br />

Bolt-on upgrade for Nissan <strong>RB</strong>26DETT<br />

Turbine housing cast from “Ni-Resist”<br />

Turbine wheel is cast from “Inconel”<br />

•<br />

•<br />

•<br />

•<br />

material for extreme applications<br />

GT2860R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

707160-5 446179-51 47.2mm 60.1mm 62 0.60 53.9mm 76 0.64<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-230* 0.64<br />

430609-231* 0.86<br />

* Note: allows turbo to be outline interchangeable with other turbos using the<br />

traditional 5-bolt turbine housing (Diagram 85-11). Housing fits over turbine<br />

wheel but actuator/wastegate fitment may need to be adjusted<br />

36 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2860R<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing complete<br />

with actuator<br />

Upgrade turbocharger for GT2554R (471171-3)<br />

and GT2854R (471171-9)<br />

Essentially, a GT2860RS Disco Potato turbo with<br />

a GT2560R compressor housing<br />

Turbine wheel is cast from “Inconel” material for<br />

•<br />

•<br />

•<br />

extreme applications<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 02 82 04<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

DISPLACEMENT 1.8L - 3.0L<br />

HORSEPOWER 250 - 360<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT2860R COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

739548-9 446179-66 47.2mm 60.1mm 62 0.60 53.9mm 76 0.86<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-230 0.64<br />

430609-231 0.86<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

37


GT2860RS<br />

The “Disco Potato”<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 250 - 360<br />

DISPLACEMENT 1.8L - 3.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 28 82 19<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing complete<br />

with actuator<br />

Upgrade turbocharger for GT2554R (471171-3) and<br />

GT2560R (466541-1); turbine housing flanges are<br />

outline interchangeable<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

“Disco Potato” refers to the Nissan Sentra (potatoshaped<br />

body) with psychadelic color-change<br />

paint (disco) that was fitted with one of the first<br />

GT2860RS’ in a project car build. The name stuck.<br />

•<br />

•<br />

•<br />

GT2860RS COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

739548-1 446179-66 47.2mm 60.1mm 62 0.60 53.9mm 76 0.86<br />

739548-5 446179-66 47.2mm 60.1mm 62 0.60 53.9mm 76 0.64<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-230 0.64<br />

430609-231 0.86<br />

38 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2871R<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing; 771847-1<br />

complete with adjustable actuator, 472560-15 does<br />

NOT include actuator<br />

Provides better boost response than turbochargers<br />

743347-1 & 743347-2<br />

Direct replacement upgrade for GT2560R<br />

(466541-1 & 4) used on Nissan SR20DET engine<br />

Turbine housing cast from “Ni-Resist” material<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

•<br />

•<br />

•<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 02 82 04<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

GT2871R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

472560-15 446179-67 51.2mm 71.0mm 52 0.60 53.9mm 76 0.64<br />

771847-1 446179-67 51.2mm 71.0mm 52 0.60 53.9mm 76 0.64<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-231 0.86<br />

DISPLACEMENT 1.8L - 3.0L<br />

HORSEPOWER 280 - 460<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

39


GT2871R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 280 - 475<br />

DISPLACEMENT 1.8L - 3.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 02 82 01<br />

Turbine 83 02 85 09<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing, complete<br />

with actuator<br />

Internally wastegated turbine housing; 780371-2<br />

includes actuator, 707160-10 does NOT include<br />

actuator<br />

Turbine housing cast from high-nickel “Ni-Resist”<br />

material<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

•<br />

•<br />

•<br />

GT2871R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

780371-2 446179-67 51.2mm 71.0mm 52 0.60 53.9mm 76 0.64<br />

707160-10 446179-67 51.2mm 71.0mm 52 0.60 53.9mm 76 0.64<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-230* 0.64<br />

430609-231* 0.86<br />

* Note: allows turbo to be outline interchangeable with other turbos using the<br />

traditional 5-bolt turbine housing. Housing fits over turbine wheel but actuator/wastegate<br />

fitment may need to be adjusted<br />

40 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2871R<br />

•<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing complete<br />

with actuator<br />

Upgrade turbocharger for GT2860RS (739548-1)<br />

743347-1 features a high boost actuator<br />

adjustable down to 12 psi<br />

743347-3 features a low boost actuator<br />

adjustable down to 6 psi<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

•<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 28 82 19<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

GT2871R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

743347-1 446179-31 49.2mm 71.0mm 48 0.60 53.9mm 76 0.86<br />

743347-3 446179-31 49.2mm 71.0mm 48 0.60 53.9mm 76 0.64<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-230 0.64<br />

430609-231 0.86<br />

DISPLACEMENT 1.8L - 3.0L<br />

HORSEPOWER 250 - 400<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

41


GT2871R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 280 - 475<br />

DISPLACEMENT 1.8L - 3.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 28 82 19<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing, complete<br />

with actuator<br />

Direct bolt-on upgrade turbocharger for<br />

GT2860RS (PN 739548-1)<br />

743347-2 features a high boost actuator<br />

adjustable down to 12 psi<br />

743347-4 features a low boost actuator adjustable<br />

down to 6 psi<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

•<br />

•<br />

•<br />

•<br />

GT2871R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

743347-2 446179-32 53.1mm 71.0mm 56 0.60 53.9mm 76 0.86<br />

743347-4 446179-32 53.1mm 71.0mm 56 0.60 53.9mm 76 0.64<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-230 0.64<br />

430609-231 0.86<br />

42 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT2876R<br />

• Dual ball bearing, oil & water-cooled CHRA<br />

• Internally wastegated turbine housing, actuator<br />

NOT included<br />

• Turbine wheel is cast from “Inconel” material<br />

for extreme applications<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 35 82 24<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

DISPLACEMENT 1.8L - 3.0L<br />

HORSEPOWER 280 - 480<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT2876R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

705330-1 446179-18 52.8mm 76.1mm 48 0.70 53.9mm 76 0.64<br />

705330-2 446179-18 52.8mm 76.1mm 48 0.70 53.9mm 76 0.86<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

430609-230 0.64<br />

430609-231 0.86<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

43


GT3071R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 300 - 460<br />

DISPLACEMENT 1.8L - 3.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor See Note 82 17<br />

Turbine See Note See Note<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Compressor and turbine housings sold separately<br />

Customizable with compressor and free float turbine<br />

housing kits<br />

Unit is interchangeable on turbine side with<br />

GT3076R<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

•<br />

•<br />

GT3071R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

- 700177-23 53.1mm 71.0mm 56 - 60.0mm 84 -<br />

COMPRESSOR OPTION HOUSING OPTIONS<br />

PN Inlet Dia Outlet Dia A/R<br />

756021-1 2.75” Hose 2.00” Hose 0.50<br />

756021-2 4.00” Hose 2.00” Hose 0.50<br />

TU<strong>RB</strong>INE OPTION HOUSING OPTIONS<br />

PN A/R Inlet Outlet<br />

740902-1* 1.06 T3 4 Bolt<br />

740902-2* 0.82 T3 4 Bolt<br />

740902-3* 0.63 T3 4 Bolt<br />

740902-7 + 1.06 T3 V Band<br />

740902-8 + 0.82 T3 V Band<br />

740902-9 + 0.63 T3 V Band<br />

740902-13^ 1.06 T4 V Band<br />

740902-14^ 0.82 T4 V Band<br />

740902-15^ 0.63 T4 V Band<br />

Dimension Note: Turbine Housing Options<br />

* Note: Inlet flange: 83-04; Outlet flange: 85-07<br />

+ Note: Inlet flange: 83-04; Outlet flange: 86-13<br />

^ Note: Inlet flange: 83-10; Outlet flange: 86-13<br />

44 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT3071R<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Internally wastegated turbine housing, actuator<br />

NOT included<br />

Wastegated version of the GT3071R uses<br />

specifically-modified GT30 turbine wheels for<br />

use in the T25-style turbine housing<br />

Turbine housing flanges are outline<br />

interchangeable with GT2554R (471171-3),<br />

GT2560R (466541-1) & GT2860RS (739548-1)<br />

Turbine wheel is cast from “Inconel” material<br />

for extreme applications<br />

•<br />

•<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor See Note 82 17<br />

Turbine 83 01 85 11<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

GT3071R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

700382-3 700177-3 53.1mm 71.0mm 56 0.50 56.5mm 84 0.64<br />

700382-20 700177-4 53.1mm 71.0mm 56 0.50 56.5mm 90 0.86<br />

DISPLACEMENT 1.8L - 3.0L<br />

HORSEPOWER 280 - 480<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

COMPRESSOR HOUSING OPTIONS<br />

PN Inlet Dia Outlet Dia A/R<br />

756021-1* 2.75” Hose 2.00” Hose 0.50<br />

756021-2+ 4.00” Hose 2.00” Hose 0.50<br />

*Note: allows 700382-20 to use 2.75” hose inlet instead of 4.00”<br />

+Note: allows 700382-3 to use 4.00” hose inlet instead of 2.75”<br />

Dimension Note: Compressor Inlet<br />

700382-3: flange 82-26 ; 756021-1: flange 82-26<br />

700382-20: flange 82-34; 756021-2: flange 82-34<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

45


GTX3071R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 340 - 560<br />

DISPLACEMENT 1.8L - 3.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor See Note 82 17<br />

Turbine See Note See Note<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Forged, fully-machined compressor wheel<br />

featuring next generation aerodynamics<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

Outline interchageable with GT3071R<br />

GTX3071R is sold without turbine housing,<br />

includes CHRA & compressor housing. Turbine<br />

housing kits are available<br />

GTX3071R COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

803712-1 700177-46 54.1mm 71.4mm 58 0.60 60.0mm 84 -<br />

GTX<br />

Dimension Note: Turbine Housing Options<br />

* Note: Inlet flange: 83-04; Outlet flange: 85-07<br />

+ Note: Inlet flange: 83-04; Outlet flange: 86-13<br />

^ Note: Inlet flange: 83-10; Outlet flange: 86-13<br />

TU<strong>RB</strong>INE OPTION HOUSING OPTIONS<br />

PN A/R Inlet Outlet<br />

740902-1* 1.06 T3 4 Bolt<br />

740902-2* 0.82 T3 4 Bolt<br />

740902-3* 0.63 T3 4 Bolt<br />

740902-7 + 1.06 T3 V Band<br />

740902-8 + 0.82 T3 V Band<br />

740902-9 + 0.63 T3 V Band<br />

740902-13^ 1.06 T4 V Band<br />

740902-14^ 0.82 T4 V Band<br />

740902-15^ 0.63 T4 V Band<br />

46 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT3076R<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Upgrade turbocharger for the free float GT3071R;<br />

turbine housing flanges are interchangeable<br />

Packaged as a CHRA and compressor housing<br />

without a turbine housing (must be purchased<br />

separately)<br />

Each turbine housing kit includes turbine housing,<br />

clamps, bolts and turbine inlet gasket<br />

Turbine wheel is cast from “Inconel” material for<br />

extreme applications<br />

•<br />

•<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 32 82 17<br />

Turbine See Note See Note<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

GT3076R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

700382-12 700177-7 57.0mm 76.2mm 56 0.60 60.0mm 84 -<br />

DISPLACEMENT 1.8L - 3.0L<br />

HORSEPOWER 310 - 525<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Dimension Note: Turbine Housing Options<br />

* Note: Inlet flange: 83-04; Outlet flange: 85-07<br />

+ Note: Inlet flange: 83-04; Outlet flange: 86-13<br />

^ Note: Inlet flange: 83-10; Outlet flange: 86-13<br />

TU<strong>RB</strong>INE OPTION HOUSING OPTIONS<br />

PN A/R Inlet Outlet<br />

740902-1* 1.06 T3 4 Bolt<br />

740902-2* 0.82 T3 4 Bolt<br />

740902-3* 0.63 T3 4 Bolt<br />

740902-7 + 1.06 T3 V Band<br />

740902-8 + 0.82 T3 V Band<br />

740902-9 + 0.63 T3 V Band<br />

740902-13^ 1.06 T4 V Band<br />

740902-14^ 0.82 T4 V Band<br />

740902-15^ 0.63 T4 V Band<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

47


GTX3076R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 360 - 640<br />

DISPLACEMENT 1.8L - 3.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 35 82 17<br />

Turbine See Note See Note<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Forged, fully-machined compressor wheel<br />

featuring next generation aerodynamics<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

Outline interchageable with GT3076R<br />

GTX3076R is sold without turbine housing,<br />

includes CHRA & compressor housing. Turbine<br />

housing kits are available<br />

GTX3076R COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

803713-1 700177-42 58.0mm 76.6mm 58 0.60 60.0mm 84 -<br />

GTX<br />

Dimension Note: Turbine Housing Options<br />

* Note: Inlet flange: 83-04; Outlet flange: 85-07<br />

+ Note: Inlet flange: 83-04; Outlet flange: 86-13<br />

^ Note: Inlet flange: 83-10; Outlet flange: 86-13<br />

TU<strong>RB</strong>INE OPTION HOUSING OPTIONS<br />

PN A/R Inlet Outlet<br />

740902-1* 1.06 T3 4 Bolt<br />

740902-2* 0.82 T3 4 Bolt<br />

740902-3* 0.63 T3 4 Bolt<br />

740902-7 + 1.06 T3 V Band<br />

740902-8 + 0.82 T3 V Band<br />

740902-9 + 0.63 T3 V Band<br />

740902-13^ 1.06 T4 V Band<br />

740902-14^ 0.82 T4 V Band<br />

740902-15^ 0.63 T4 V Band<br />

48 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT3271<br />

• Journal bearing, oil-cooled CHRA<br />

• Internally wastegated turbine housing complete<br />

with actuator<br />

• Wastegated and free float turbine housing<br />

options available<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 27 82 17<br />

Turbine 84 01 86 01<br />

Oil 84 13 84 08<br />

Water - - - -<br />

DISPLACEMENT 2.0L - 3.0L<br />

HORSEPOWER 200 - 420<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT3271R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

452203-1 436058-3 51.2mm 71.0mm 52 0.50 64.0mm 73 0.78<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

451225-26* 0.78<br />

435066-32+ 0.69<br />

* Note: Free float turbine housing option<br />

+Note: Wastegated turbine housing option<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

49


GT3582R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 400 - 600<br />

DISPLACEMENT 2.0L - 4.5L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 33 82 24<br />

Turbine 83 04 85 07<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Turbine housing is cast from high-nickel “Ni-<br />

Resist” material for extreme applications<br />

Turbine wheel is cast from “inconel” material for<br />

extreme applications<br />

Works well in twin-turbo applications for large<br />

V8 engines<br />

•<br />

•<br />

GT3582R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

714568-1 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 1.06<br />

714568-2 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 0.82<br />

714568-3 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 0.63<br />

TU<strong>RB</strong>INE OPTION HOUSING OPTIONS<br />

PN A/R Inlet Outlet<br />

740902-10 + 1.06 T3 V Band<br />

740902-11 + 0.82 T3 V Band<br />

740902-12 + 0.63 T3 V Band<br />

740902-16^ 1.06 T4 V Band<br />

740902-17^ 0.82 T4 V Band<br />

740902-18^ 0.63 T4 V Band<br />

Dimension Note: Turbine Housing Options<br />

+ Note: Inlet flange: 83-04; Outlet flange: 86-13<br />

^ Note: Inlet flange: 83-10; Outlet flange: 86-13<br />

50 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT3582R<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

Turbine housing is cast from high-nickel “Ni-<br />

Resist” material for extreme applications<br />

Turbine wheel is cast from “inconel” material<br />

for extreme applications<br />

Works well in twin-turbo applications for large<br />

V8 engines<br />

•<br />

•<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 33 82 24<br />

Turbine 83 04 86 13<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

GT3582R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

714568-7 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 1.06<br />

714568-8 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 0.82<br />

714568-9 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 0.63<br />

DISPLACEMENT 2.0L - 4.5L<br />

HORSEPOWER 400 - 675<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

TU<strong>RB</strong>INE OPTION HOUSING OPTIONS<br />

PN A/R Inlet Outlet<br />

740902-4* 1.06 T3 4 Bolt<br />

740902-5* 0.82 T3 4 Bolt<br />

740902-6* 0.63 T3 4 Bolt<br />

740902-16^ 1.06 T4 V Band<br />

740902-17^ 0.82 T4 V Band<br />

740902-18^ 0.63 T4 V Band<br />

Dimension Note: Turbine Housing Options<br />

* Note: Inlet flange: 83-04; Outlet flange: 85-07<br />

^ Note: Inlet flange: 83-10; Outlet flange: 86-13<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

51


GT3582R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 400 - 675<br />

DISPLACEMENT 2.0L - 4.5L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 33 82 24<br />

Turbine 83 10 86 13<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

Turbine wheel is cast from “inconel” material for<br />

extreme applications<br />

Works well in twin-turbo applications for large<br />

V8 engines<br />

•<br />

•<br />

GT3582R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

714568-10 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 1.06<br />

714568-11 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 0.82<br />

714568-12 706451-5 61.4mm 82.0mm 56 0.70 68.0mm 84 0.63<br />

TU<strong>RB</strong>INE OPTION HOUSING OPTIONS<br />

PN A/R Inlet Outlet<br />

740902-4* 1.06 T3 4 Bolt<br />

740902-5* 0.82 T3 4 Bolt<br />

740902-6* 0.63 T3 4 Bolt<br />

740902-16 + 1.06 T3 V Band<br />

740902-17 + 0.82 T3 V Band<br />

740902-18 + 0.63 T3 V Band<br />

Dimension Note: Turbine Housing Options<br />

* Note: Inlet flange: 83-04; Outlet flange: 85-07<br />

+ Note: Inlet flange: 83-04; Outlet flange: 86-13<br />

52 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GTX3582R<br />

•<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Forged, fully-machined compressor wheel<br />

featuring next generation aerodynamics<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

Outline interchageable with GT3582R<br />

GTX3582R is sold without turbine housing,<br />

includes CHRA & compressor housing. Turbine<br />

housing kits are available<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 33 82 24<br />

Turbine See Note See Note<br />

Oil 84 11 84 18<br />

Water 86 13 86 13<br />

GTX3582R COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

803715-1 706451-34 62.5mm 82.5mm 58 0.70 68.0mm 84 -<br />

DISPLACEMENT 2.0L - 4.5L<br />

HORSEPOWER 450 - 750<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Dimension Note: Turbine Housing Options<br />

* Note: Inlet flange: 83-04; Outlet flange: 85-07<br />

+ Note: Inlet flange: 83-04; Outlet flange: 86-13<br />

^ Note: Inlet flange: 83-10; Outlet flange: 86-13<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

740902-4* 1.06<br />

740902-5* 0.82<br />

740902-6* 0.63<br />

740902-10 + 1.06<br />

740902-11 + 0.82<br />

740902-12 + 0.63<br />

740902-16^ 1.06<br />

740902-17^ 0.82<br />

740902-18^ 0.63<br />

GTX<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

53


GT3776<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 320 - 500<br />

DISPLACEMENT 2.0L - 4.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 33 82 22<br />

Turbine 84 01 85 04<br />

Oil 84 19 84 08<br />

Water - - - -<br />

•<br />

•<br />

•<br />

Journal bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Extremely efficient turbo<br />

GT3776<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

452159-1 436085-1 55.0mm 76.2mm 52 0.54 72.5mm 84 1.12<br />

54 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT3782<br />

•<br />

•<br />

Journal bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine<br />

housing<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 33 82 22<br />

Turbine 84 01 85 04<br />

Oil 84 19 84 08<br />

Water - - - -<br />

DISPLACEMENT 2.0L - 4.0L<br />

HORSEPOWER 350 - 550<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT3782<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

452159-3 436085-5 59.1mm 82.0mm 52 0.54 72.5mm 84 1.12<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

55


GT3788R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 400 - 675<br />

DISPLACEMENT 2.0L - 5.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 31 82 25<br />

Turbine 84 03 86 04<br />

Oil 84 13 84 08<br />

Water 86 14 86 14<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

GT3788R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

772719-1 751451-12 63.5mm 88.0mm 52 0.72 72.5mm 78 0.89<br />

772719-2 751451-12 63.5mm 88.0mm 52 0.72 72.5mm 78 0.99<br />

772719-3 751451-12 63.5mm 88.0mm 52 0.72 72.5mm 78 1.11<br />

56 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT4088R<br />

• Dual ball bearing, oil & water-cooled<br />

CHRA<br />

• Free float, non-wastegated turbine<br />

housing<br />

• Ported shroud compressor housing to<br />

increase surge resistance<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 31 82 25<br />

Turbine 84 03 86 04<br />

Oil 84 13 84 08<br />

Water 86 14 86 14<br />

GT4088R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

751470-1 751450-9 63.5mm 88.0mm 52 0.72 77.0mm 78 0.85<br />

751470-2 751450-9 63.5mm 88.0mm 52 0.72 77.0mm 78 0.95<br />

751470-3 751450-9 63.5mm 88.0mm 52 0.72 77.0mm 78 1.06<br />

751470-4 751450-9 63.5mm 88.0mm 52 0.72 77.0mm 78 1.19<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

448375-18 0.85<br />

448375-19 0.95<br />

448375-20 1.06<br />

448375-21 1.19<br />

DISPLACEMENT 2.0L - 6.0L<br />

HORSEPOWER 400 - 675<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

57


GT4088<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 400 - 725<br />

DISPLACEMENT 2.0L - 6.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 31 82 25<br />

Turbine 84 04 86 03<br />

Oil 84 13 84 08<br />

Water - - - -<br />

•<br />

•<br />

•<br />

Journal bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

GT4088<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

703457-2 449739-34 64.7mm 88.0mm 54 0.72 77.6mm 83 1.34<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

434309-88 1.19<br />

58 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT4094R<br />

•<br />

•<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ideal for applications that cannot accomodate the<br />

GT4294R but need more flow than the GT4088R<br />

Outline interchangeable with the GT4088R<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 31 82 25<br />

Turbine 84 03 86 04<br />

Oil 84 13 84 08<br />

Water 86 14 86 14<br />

GT4094R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

751470-19 751450-16 67.8mm 94.0mm 52 0.72 77.0mm 78 0.85<br />

751470-20 751450-16 67.8mm 94.0mm 52 0.72 77.0mm 78 0.95<br />

751470-21 751450-16 67.8mm 94.0mm 52 0.72 77.0mm 78 1.06<br />

751470-22 751450-16 67.8mm 94.0mm 52 0.72 77.0mm 78 1.19<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

448375-18 0.85<br />

448375-19 0.95<br />

448375-20 1.06<br />

448375-21 1.19<br />

DISPLACEMENT 2.0L - 6.0L<br />

HORSEPOWER 450 - 800<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

59


GT4294<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 425 - 850<br />

DISPLACEMENT 2.0L - 7.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 37 82 07<br />

Turbine 84 05 86 05<br />

Oil 84 22 84 08<br />

Water - - - -<br />

•<br />

•<br />

•<br />

Journal bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Optional turbine housings with T4 or diesel<br />

turbine inlet flange<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

•<br />

GT4294<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

731376-1 712402-7 70.3mm 94.0mm 56 0.60 82.0mm 84 1.15<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

*Note: inlet flange: Page - 84 Diagram - 03<br />

+ Note: inlet flange: Page - 84 Diagram - 05<br />

A/R<br />

757707-1* 1.01<br />

757707-2* 1.15<br />

757707-3* 1.28<br />

757707-4* 1.44<br />

757707-10+ 1.01<br />

757707-9+ 1.15<br />

60 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT4294R<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 37 82 07<br />

Turbine 84 03 86 06<br />

Oil 84 17 84 08<br />

Water 86 14 86 14<br />

GT4294R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

774595-1 451888-9 70.3mm 94.0mm 56 0.60 82.0mm 84 1.01<br />

774595-2 451888-9 70.3mm 94.0mm 56 0.60 82.0mm 84 1.15<br />

774595-3 451888-9 70.3mm 94.0mm 56 0.60 82.0mm 84 1.28<br />

774595-4 451888-9 70.3mm 94.0mm 56 0.60 82.0mm 84 1.44<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

757707-10* 1.01<br />

757707-9* 1.15<br />

DISPLACEMENT 2.0L - 7.0L<br />

HORSEPOWER 425 - 850<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

*Note: inlet flange: Page - 84 Diagram - 05<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

61


GTX4294R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

DISPLACEMENT 2.0L - 7.0L<br />

HORSEPOWER 475 - 950<br />

GTX<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 37 82 07<br />

Turbine See Note See Note<br />

Oil 84 17 84 08<br />

Water 86 14 86 14<br />

•<br />

•<br />

•<br />

•<br />

Forged, fully-machined compressor wheel<br />

featuring next generation aerodynamics<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Optional turbine housings with T4 or diesel turbine<br />

inlet flange<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

Outline interchageable with ball bearing GT4294R<br />

GTX4294R is sold without turbine housing,<br />

includes CHRA & compressor housing. Turbine<br />

housing kits are available<br />

•<br />

•<br />

•<br />

GTX4294R COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

800269-1 451888-43 70.3mm 94.0mm 56 0.60 82.0mm 84 -<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN A/R Type<br />

757707-1* 1.01 Free Float<br />

757707-2* 1.15<br />

757707-3* 1.28<br />

757707-4* 1.44<br />

757707-10 + 1.01<br />

757707-9 + 1.15<br />

*Note: inlet flange: Page - 84 Diagram - 03<br />

+ Note: inlet flange: Page - 84 Diagram - 05<br />

62 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT4202<br />

•<br />

•<br />

•<br />

Journal bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Optional turbine housings with T4 or diesel<br />

turbine inlet flange<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 37 82 07<br />

Turbine 84 03 86 06<br />

Oil 84 17 84 08<br />

Water - - - -<br />

GT4202<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

731376-2 712402-8 74.3mm 102.3mm 53 0.60 82.0mm 84 1.15<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

757707-1* 1.01<br />

757707-3* 1.28<br />

757707-4* 1.44<br />

757707-10+ 1.01<br />

757707-9+ 1.15<br />

* Note: inlet flange: Page - 84 Diagram - 03<br />

+Note: inlet flange: Page - 84 Diagram - 05<br />

DISPLACEMENT 2.0L - 7.0L<br />

HORSEPOWER 450 - 1000<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

63


GT4202R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 450 - 1000<br />

DISPLACEMENT 2.0L - 7.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 37 82 07<br />

Turbine 84 03 86 06<br />

Oil 84 17 84 08<br />

Water 86 14 86 14<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to reduce<br />

the occurance of surge<br />

Outline interchangeable with the GTX4202R<br />

and the journal bearing GT4202 (with the<br />

exception of water cooling)<br />

•<br />

GT4202R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

774595-5 451888-11 74.7mm 102.3mm 53 0.60 82.0mm 84 1.01<br />

774595-6 451888-11 74.7mm 102.3mm 53 0.60 82.0mm 84 1.15<br />

774595-7 451888-11 74.7mm 102.3mm 53 0.60 82.0mm 84 1.28<br />

774595-8 451888-11 74.7mm 102.3mm 53 0.60 82.0mm 84 1.44<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

757707-10* 1.01<br />

757707-9* 1.15<br />

*Note: inlet flange: Page - 84 Diagram - 05<br />

64 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GTX4202R<br />

•<br />

•<br />

•<br />

•<br />

Forged, fully-machined compressor wheel featuring<br />

next generation aerodynamics<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Optional turbine housings with T4 or diesel turbine inlet<br />

flange<br />

Ported shroud compressor housing to increase surge<br />

resistance<br />

Outline interchageable with the ball bearing GT4202R<br />

GTX4202R is sold without turbine housing, includes<br />

CHRA & compressor housing. Turbine housing kits<br />

are available<br />

•<br />

•<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 37 82 07<br />

Turbine See Note See Note<br />

Oil 84 17 84 08<br />

Water 86 14 86 14<br />

GTX4202R COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

800269-2 451888-44 75.8mm 102.3mm 55 0.60 82.0mm 84 -<br />

DISPLACEMENT 2.0L - 7.0L<br />

HORSEPOWER 525 - 1150<br />

GTX<br />

*Note: inlet flange: Page - 84 Diagram - 03<br />

+ OPTION<br />

Note: inlet flange: Page - 84 Diagram - 05<br />

TU<strong>RB</strong>INE HOUSING OPTIONS<br />

PN A/R Type<br />

757707-1* 1.01 Free Float<br />

757707-2* 1.15<br />

757707-3* 1.28<br />

757707-4* 1.44<br />

757707-10 + 1.01<br />

757707-9 + 1.15<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

65


GT4508R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 600 - 1100<br />

DISPLACEMENT 2.0L - 8.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 38 82 30<br />

Turbine 84 03 86 06<br />

Oil 84 17 84 08<br />

Water 86 14 86 14<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Optional turbine housings with T4 or diesel<br />

turbine inlet flange<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

•<br />

GT4508R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

774596-1 451888-28 79.8mm 108.0mm 55 0.69 87.0mm 85 1.01<br />

774596-2 451888-28 79.8mm 108.0mm 55 0.69 87.0mm 85 1.15<br />

774596-3 451888-28 79.8mm 108.0mm 55 0.69 87.0mm 85 1.28<br />

774596-4 451888-28 79.8mm 108.0mm 55 0.69 87.0mm 85 1.44<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

757707-5 1.01<br />

757707-6 1.15<br />

757707-7 1.28<br />

757707-8 1.44<br />

66 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GTX4508R<br />

•<br />

•<br />

•<br />

•<br />

Forged, fully-machined compressor wheel featuring<br />

next generation aerodynamics<br />

Dual ball bearing, oil & water-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to increase<br />

surge resistance<br />

Outline interchageable with the ball bearing<br />

GT4508R<br />

GTX4508R is sold without turbine housing,<br />

includes CHRA & compressor housing. Turbine<br />

housing kits are available<br />

•<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 38 82 30<br />

Turbine See Note See Note<br />

Oil 84 17 84 08<br />

Water 86 14 86 14<br />

DISPLACEMENT 2.0L - 8.0L<br />

HORSEPOWER 700 - 1250<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GTX4508R COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

800270-1 451888-45 79.8mm 108.0mm 55 0.69 87.0mm 85 -<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

757707-5 1.01<br />

757707-6 1.15<br />

757707-7 1.28<br />

757707-8 1.44<br />

GTX<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

67


GT4708<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 700 - 1150<br />

DISPLACEMENT 2.5L - 10.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 38 82 30<br />

Turbine 83 05 86 10<br />

Oil 84 14 84 09<br />

Water - - - -<br />

•<br />

•<br />

•<br />

Journal bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

Outline interchangeable with the ball bearing<br />

GT4708R<br />

•<br />

GT4708<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

763740-3 767564-1 79.8mm 108.0mm 55 0.69 92.7mm 82 0.96<br />

763740-4 767564-1 79.8mm 108.0mm 55 0.69 92.7mm 82 1.08<br />

763740-5 767564-1 79.8mm 108.0mm 55 0.69 92.7mm 82 1.23<br />

763740-6 767564-1 79.8mm 108.0mm 55 0.69 92.7mm 82 1.39<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

761208-9 0.96<br />

761208-10 1.08<br />

761208-11 1.23<br />

761208-12 1.39<br />

68 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT4708R<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

Outline interchageable with the journal<br />

bearing GT4708<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 38 82 30<br />

Turbine 83 05 86 10<br />

Oil 84 12 84 08<br />

Water - - - -<br />

GT4708R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

769112-1 769210-1 79.8mm 108.0mm 55 0.69 92.7mm 82 0.96<br />

769112-2 769210-1 79.8mm 108.0mm 55 0.69 92.7mm 82 1.08<br />

769112-3 769210-1 79.8mm 108.0mm 55 0.69 92.7mm 82 1.23<br />

769112-4 769210-1 79.8mm 108.0mm 55 0.69 92.7mm 82 1.39<br />

DISPLACEMENT 2.5L - 10.0L<br />

HORSEPOWER 700 - 1150<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

761208-9 0.96<br />

761208-10 1.08<br />

761208-11 1.23<br />

761208-12 1.39<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

69


GT4718<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 800 - 1350<br />

DISPLACEMENT 2.5L - 10.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 38 82 30<br />

Turbine 83 05 86 10<br />

Oil 84 14 84 09<br />

Water - - - -<br />

•<br />

•<br />

•<br />

Journal bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

Outline interchangeable with the ball bearing<br />

GT4718R<br />

•<br />

GT4718<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

763740-7 767564-2 87.8mm 117.6mm 56 0.69 92.7mm 82 0.96<br />

763740-8 767564-2 87.8mm 117.6mm 56 0.69 92.7mm 82 1.08<br />

763740-9 767564-2 87.8mm 117.6mm 56 0.69 92.7mm 82 1.23<br />

763740-10 767564-2 87.8mm 117.6mm 56 0.69 92.7mm 82 1.39<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

761208-9 0.96<br />

761208-10 1.08<br />

761208-11 1.23<br />

761208-12 1.39<br />

70 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT4718R<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

Outline interchageable with the journal<br />

bearing GT4718<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 38 82 30<br />

Turbine 83 05 86 10<br />

Oil 84 12 84 08<br />

Water - - - -<br />

GT4718R<br />

COMPRESSOR<br />

TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

769112-5 769210-2 87.8mm 117.6mm 56 0.69 92.7mm 82 0.96<br />

769112-6 769210-2 87.8mm 117.6mm 56 0.69 92.7mm 82 1.08<br />

769112-7 769210-2 87.8mm 117.6mm 56 0.69 92.7mm 82 1.23<br />

769112-8 769210-2 87.8mm 117.6mm 56 0.69 92.7mm 82 1.39<br />

DISPLACEMENT 2.5L - 10.0L<br />

HORSEPOWER 800 - 1350<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

TU<strong>RB</strong>INE HOUSING OPTION OPTIONS<br />

PN<br />

A/R<br />

761208-9 0.96<br />

761208-10 1.08<br />

761208-11 1.23<br />

761208-12 1.39<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

71


GT5533R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 850 - 1550<br />

DISPLACEMENT 3.0L - 12.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 38 82 30<br />

Turbine 83 05 86 10<br />

Oil 84 20 84 21<br />

Water - - - -<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

GT5533R COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

769115-2 769210-3 91.2mm 133.3mm 47 0.69 111.5mm 84 1.00<br />

72 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT5533R<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 38 82 30<br />

Turbine 83 05 86 10<br />

Oil 84 20 84 21<br />

Water - - - -<br />

DISPLACEMENT 3.0L - 12.0L<br />

HORSEPOWER 1100 - 1700<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT5533R COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

769115-7 769210-5 93.8mm 133.3mm 49.5 0.81 111.5mm 84 1.00<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

73


GT5541R<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

HORSEPOWER 1200 - 1800<br />

DISPLACEMENT 3.0L - 12.0L<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 40 82 30<br />

Turbine 83 05 86 10<br />

Oil 84 20 84 21<br />

Water - - - -<br />

•<br />

•<br />

•<br />

Dual ball bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine housing<br />

Turbine wheel cast from “Inconel” material<br />

for extreme applications<br />

Largest <strong>Garrett</strong> ® ball bearing turbo<br />

available<br />

Compressor wheel is machined from billet<br />

aluminum<br />

Ported shroud compressor housing to<br />

increase surge resistance<br />

•<br />

•<br />

•<br />

GT5541R COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

777210-12 769210-7 105.8mm 141.0mm 56 0.81 111.5mm 84 1.00<br />

74 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

GT6041R<br />

•<br />

•<br />

Journal bearing, oil-cooled CHRA<br />

Free float, non-wastegated turbine<br />

housing<br />

Largest <strong>Garrett</strong> ® turbocharger<br />

available<br />

•<br />

FLANGE INLET Inlet OUTLET Outlet<br />

Component Page Diagram Page Diagram<br />

Compressor 82 40 82 03<br />

Turbine 83 05 86 09<br />

Oil 84 14 84 09<br />

Water - - - -<br />

DISPLACEMENT 6.0L - 12.0L<br />

HORSEPOWER 1350 - 2000<br />

2000<br />

1900<br />

1800<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

GT6041R COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo PN CHRA PN Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R<br />

731377-2 730496-1 105.7mm 141.2mm 56 1.05 129.5mm 84 1.25<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

75


Ball Bearing T-Series<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

T-Series Ball Bearing Replacements<br />

<strong>Garrett</strong> ® , having created the original T3/T4 turbocharger,<br />

has introduced center housing upgrades for many existing<br />

T-Series turbochargers. Now you can keep your current<br />

turbo setup as well as your compressor and turbine<br />

housings while gaining the peace of mind that comes<br />

with every patented <strong>Garrett</strong> ® dual ball bearing unit.<br />

• Ball bearing CHRA upgrade<br />

• Reduced spool-up time, reduced lag<br />

• Direct drop-in replacement for T3/T4 turbochargers<br />

• Keep your current compressor and turbine housings<br />

• Keep your current intercooler, piping and downpipe<br />

T-SERIES UPGRADES COMPRESSOR TU<strong>RB</strong>INE<br />

Turbo<br />

CHRA Upgrade for<br />

(Ball Bearing) CHRA<br />

Exd Whl Dia Trim Whl Dia Trim<br />

T04BR 757197-1 408105-388 76.1mm 60 74.2mm 76<br />

T04ZR 740759-2 - 84.0mm 63 74.2mm 76<br />

T3/T4R 757197-2 445074-32 75.0mm 57 65.0mm 76<br />

T3/T4R 757197-3 445074-33 75.0mm 60 65.0mm 76<br />

T3/T4R 757197-4 447450-59 76.0mm 50 65.0mm 76<br />

T3/T4R 757197-5 715582-2 76.1mm 60 65.0mm 76<br />

T350R 757197-7 - 76.1mm 60 71.0mm 76<br />

• Quality - Using the same OE-based testing that is used<br />

for the world renowned GT series of turbos, the T3/T4,<br />

T04B and T04Z center housing upgrades are rigorously<br />

beaten to ensure that they can wear the <strong>Garrett</strong> ® badge.<br />

• Dependability - The center housing is a true <strong>Garrett</strong> ®<br />

dual ball bearing cartridge. This means reduced turbo<br />

spool up time and greater pressure handling while using<br />

less oil. This all equals a better driving experience.<br />

• Easy Installation - All those hours you put into planning,<br />

installing, tuning and honing your turbo setup won’t have<br />

to be doubled with a completely new turbo. In fact, the<br />

installation is as easy as removing your old journal or<br />

hybrid-bearing center housing and replacing it with a true<br />

<strong>Garrett</strong> ® dual ball bearing cartridge. Place your current<br />

compressor and turbine housings on, put it back into<br />

your engine bay and hook up the water line (oil lines may<br />

differ).<br />

You may use your housings even if you have<br />

another manufacturer’s turbo!<br />

• Proven Reliability - With thousands of passes in the<br />

professional drag race books, <strong>Garrett</strong> ® turbos have built<br />

a reputation as the one turbo that lasts. One NHRA Sport<br />

Compact professional racer, using a competitor’s product,<br />

went through 16 units in one season. He’s now switched<br />

to <strong>Garrett</strong> ® and is confident that the patented dual ball<br />

bearing cartridge can be counted on for every pass.<br />

See an authorized <strong>Garrett</strong> ® Distributor for T-Series turbos and ancilliary parts<br />

76 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Mitsubishi Evo X<br />

The <strong>Garrett</strong> Mitsubishi Evolution X Turbocharger Kit<br />

is a direct drop-in upgrade for the stock unit. The<br />

kit features your choice of a <strong>Garrett</strong> ® GT3071R or<br />

<strong>Garrett</strong> ® GT3076R turbocharger with divided turbine<br />

housing and ported shroud compressor housing<br />

specially designed to directly fit the Evolution X’s stock<br />

divided manifold, exhaust heat shield and exhaust<br />

placement.<br />

The advantages to the <strong>Garrett</strong> ® Evolution X Turbo Kit are:<br />

• A patented <strong>Garrett</strong> ® dual ball bearing cartridge for<br />

unbeatable response, efficiency and durability. Elimination<br />

of the thrust bearing eliminates failures at elevated boost levels<br />

• Larger than stock turbine housing for enhanced<br />

flow and reduced back pressure<br />

• Larger than stock compressor housing and<br />

compressor wheel for more power capability<br />

• Retains the twin scroll design and mounting<br />

flange for quick spool and transient response<br />

• Ni-Resist turbine housing for extreme conditions<br />

• Direct drop-in upgrade for easy installation<br />

• Will fit stock or aftermarket upgrade wastegate<br />

actuator<br />

• Fits all aftermarket components designed for use<br />

with the stock turbo<br />

GT3071R GT3076R<br />

Horsepower (Stock 291) 475 525<br />

Compressor Wheel Inducer 53.1mm 57.0mm<br />

Compressor Wheel Exducer 71.0mm 76.2mm<br />

Compressor Wheel Trim 56 56<br />

Compressor Housing A/R 0.60 0.60<br />

Turbine Wheel Diameter 60.0mm 60.0mm<br />

TU<strong>RB</strong>O PN TU<strong>RB</strong>O TU<strong>RB</strong>INE A/R<br />

788550-1 GT3071R 0.73<br />

788550-2 GT3076R 0.94<br />

788550-3 GT3071R 0.94<br />

788550-4 GT3076R 0.73<br />

Power figures are estimates based on air flow capabilities of the<br />

individual turbochargers and are not a guarantee. Results will<br />

vary.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

77


GM Duramax<br />

Chevrolet & GMC Duramax (2001-2004)<br />

Silverado, Sierra with LB7 engine<br />

This is a complete drop-in performance upgrade<br />

turbocharger kit that provides extra flow, efficiency and<br />

durability, delivering the boost you need.<br />

•<br />

Advanced GT-series wheel designs<br />

that ensure top performance,<br />

lower back pressure<br />

and reduced intake<br />

and exhaust gas<br />

temperatures.<br />

Patented <strong>Garrett</strong> ®<br />

dual ball-bearing<br />

cartridge that offers<br />

unbeatable low<br />

drag response and<br />

the durability required at elevated boost levels.<br />

Capable of an additional 370+ HP increase over stock<br />

Part Number 766172-1<br />

•<br />

•<br />

•<br />

The PowerMax TM Duramax Turbo Kit includes:<br />

• <strong>Garrett</strong> ® GT3788R Turbocharger<br />

• Turbine inlet adapter<br />

• High flow downpipe<br />

• Oil inlet fitting with restrictor<br />

• Gaskets, O-rings and fasteners<br />

• Installation instructions<br />

Performance<br />

Stock<br />

PowerMax*<br />

0-60 MPH Horsepower Torque<br />

7.6 seconds<br />

6.8 seconds<br />

279<br />

440<br />

560<br />

808<br />

* actual results<br />

with performance<br />

chip and exhaust<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

Chevrolet & GMC Duramax (2004.5-2011)<br />

Silverado, Sierra (LLY, LBZ, LMM, LML, LGH)<br />

This is a complete drop-in performance upgrade<br />

turbocharger kit that provides extra flow, efficiency and<br />

durability, delivering the boost you need.<br />

• Advanced GT-series wheel designs that ensure top<br />

performance, lower<br />

back pressure and<br />

reduced intake<br />

and exhaust gas<br />

temperatures.<br />

• Featuring the<br />

<strong>Garrett</strong> ® patented<br />

Advanced Variable<br />

Nozzle Turbine<br />

(AVNT TM ) design for<br />

increased compressor<br />

flow and turbine flow<br />

• Utilizes nine movable vanes<br />

which significantly increase turbine efficiency and<br />

improve engine performance from idle launch through<br />

peak torque<br />

• Patented integral electro-hydraulic actuation and<br />

proportional solenoid for infinitely variable control<br />

• Provides up to an estimated 500 or 575 HP with no<br />

sacrifice to drivability<br />

• Suitable as a performance upgrade or replacement for<br />

original equipment<br />

• Outline interchangeable for a perfect fit every time<br />

The PowerMax TM Duramax Turbo Kit includes:<br />

Stage 1 (500 HP): Stage 2 (575 HP):<br />

• <strong>Garrett</strong> ® AVNT TM GT3794VA • <strong>Garrett</strong> ® AVNT TM GT4094VA<br />

Turbocharger (773540-1) Turbocharger (773542-1)<br />

• Adapter cable<br />

• Adapter cable<br />

• Installation instructions • Installation instructions<br />

78 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Ford Power Stroke<br />

7.3L Powerstroke (1999.5-2003) 6.0L Powerstroke (2003, 2004 - 2007)<br />

With this turbo kit, you will experience <strong>Garrett</strong> ® GT dual<br />

ball bearing technology working to give you unbelievable<br />

power pushing your truck to the limits<br />

• A patented<br />

<strong>Garrett</strong> ® dual ball<br />

bearing cartridge<br />

for unbeatable<br />

response, efficiency<br />

and durability.<br />

Elimination of<br />

the thrust bearing<br />

eliminates failures at<br />

elevated boost levels<br />

• The 88mm GT compressor wheel<br />

provides 33% more flow than the stock 80mm wheel.<br />

Ported shroud housing improves compressor flow range<br />

for surge control and increased choke flow<br />

• 1.00 A/R turbine housing for free flowing exhaust with<br />

reduced back pressure and up to 200° reduction in<br />

exhaust gas temperature<br />

• Maximum recommended boost level is 40 psig<br />

• Part Number 739619-4<br />

The PowerMax TM 7.3L Ford Powerstroke<br />

Turbo Kit includes:<br />

• <strong>Garrett</strong> ® GTP38R Turbocharger<br />

• 4-inch inlet hose<br />

• Band clamp<br />

• Oil seal rings<br />

• Installation instructions<br />

Performance<br />

Stock<br />

PowerMax<br />

0-60 MPH Horsepower Torque<br />

11.0 seconds<br />

7.9 seconds<br />

208<br />

280<br />

410<br />

550<br />

* actual results<br />

with performance<br />

chip and exhaust<br />

This is a complete drop-in performance upgrade<br />

turbocharger kit that provides extra flow, efficiency and<br />

durability, delivering the boost you need.<br />

• Features the <strong>Garrett</strong> ® patented Advanced Variable<br />

Nozzle Turbine (AVNT TM )<br />

design for increased<br />

compressor flow and<br />

boost response<br />

• Utilizes nine movabe<br />

vanes which<br />

significantly increase<br />

turbine efficiency<br />

and improve engine<br />

performance from idle<br />

launch through peak torque<br />

• Patented integral electro-hydraulic actuation and<br />

proportional solenoid for infinitely variable control<br />

• Larger compressor wheel over stock increases maximum<br />

power range while keeping turbo speeds down for the<br />

same power output<br />

• Supports up to an additional 175 HP over stock with no<br />

sacrifice to driveability<br />

• Suitable as a performance upgrade or replacement for<br />

original equipment<br />

• Outline interchangeable for a perfect fit each and every<br />

time<br />

The PowerMax TM 6.0L Ford Powerstroke<br />

Turbo Kit includes:<br />

• <strong>Garrett</strong> ® GT3788VA Turbocharger<br />

(2003: PN 777469-1, 2004-2007: PN 772441-1)<br />

• Installation instructions<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

79


Dodge Ram<br />

5.9L Cummins (1994-2002) - 2500 & 3500<br />

This turbo kit features the exclusive <strong>Garrett</strong> ® dual ball<br />

bearing cartridge, GT wheel aerodynamics and a watercooled<br />

center housing<br />

• Stage 1 - GT3782R (759361-1)<br />

• Featuring an 82mm, 50<br />

trim compressor wheel<br />

that can produce an<br />

increase of 170+HP<br />

over stock<br />

• Stage 2 - GT3782R<br />

(759361-2)<br />

• Featuring a higher<br />

flowing 82mm, 56 trim<br />

compressor wheel that<br />

can produce an increase of<br />

270+HP over stock<br />

• Stage 3 - GT3788R (759361-3)<br />

• Featuring a super high-flowing 88mm, 52 trim<br />

compressor wheel and larger turbine housing A/R that<br />

can produce an additional 370+HP over stock<br />

The PowerMax TM Cummins Turbo Kit includes:<br />

• Stage 1, 2 or 3 Turbocharger<br />

• Oil inlet fitting kit with restrictor<br />

• Water line kit<br />

• Turbine inlet bolts<br />

• Gasket kit<br />

• Turbine outlet adapter kit<br />

• Compressor housing clamp<br />

• Installation instructions<br />

Performance<br />

Stock<br />

Stage 1*<br />

Stage 2*<br />

Stage 3*<br />

Turbo Horsepower Torque<br />

Stock<br />

GT3782R<br />

GT3782R<br />

GT3788R<br />

180<br />

350<br />

450<br />

550<br />

* Model Year 2002 vehicle with performance chip and exhaust<br />

382<br />

600<br />

1000<br />

1100<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

5.9L Cummins (2002.5-2007) - 2500 & 3500<br />

This turbo kit features the exclusive <strong>Garrett</strong> ® dual ball<br />

bearing cartridge, GT wheel aerodynamics and a watercooled<br />

center housing<br />

• Stage 1 - GT3782R (759361-10)<br />

• Featuring an 82mm, 50<br />

trim compressor wheel<br />

that increases surge<br />

margin; ideal for<br />

towing<br />

• Stage 2 - GT3782R<br />

(759361-11)<br />

• Featuring a<br />

higher flowing<br />

82mm, 56 trim<br />

compressor<br />

wheel<br />

• Stage 3 - GT3788R (759361-12)<br />

• Featuring a super high-flowing 88mm, 52 trim<br />

compressor wheel, larger turbine housing A/R,<br />

increased turbine flow over Stages 1 and 2.<br />

The PowerMax TM Cummins Turbo Kit includes:<br />

• Stage 1, 2 or 3 Turbocharger<br />

• Oil inlet fitting kit with restrictor<br />

• Water line kit<br />

• Turbine inlet bolts<br />

• Gasket kit<br />

• Turbine outlet adapter kit<br />

• Compressor housing clamp<br />

• Installation instructions<br />

Performance<br />

Stock<br />

Stage 1*<br />

Stage 2*<br />

Stage 3*<br />

Turbo Horsepower Torque<br />

Stock<br />

GT3782R<br />

GT3782R<br />

GT3788R<br />

325<br />

350<br />

450<br />

550<br />

610<br />

650<br />

1000<br />

1200<br />

* Model Year 2006 vehicle with performance chip and exhaust<br />

Note: Model<br />

Years 1994-1998<br />

with 12-valve engines<br />

will require<br />

the purchase<br />

of an additional<br />

Adapter Kit<br />

(785784-0001).<br />

Kit includes<br />

12-valve specific<br />

water line,<br />

oil inlet adapter<br />

and installation<br />

instructions.<br />

80 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Drag <strong>Racing</strong> Turbos<br />

Drag racing demands more from your vehicle than almost any other Motorsport and you demand just<br />

as much from your turbo! A <strong>Garrett</strong> ® turbocharger is put through harsh testing before it ever stages to<br />

give you the dependability you can count on each and every pass. Our engineers work directly with<br />

race sanctioning bodies to insure that there is a <strong>Garrett</strong> ® turbocharger to meet your class’ rulebook;<br />

even providing low-volume wheel combinations that allow for extreme thermal expansion to keep you<br />

on track!<br />

Check www.TurboBy<strong>Garrett</strong>.com or your sanctioning body’s rule book for restrictions on your class’<br />

turbocharger sizing.<br />

TU<strong>RB</strong>O COMPRESSOR TU<strong>RB</strong>INE<br />

TU<strong>RB</strong>O COMPRESSOR TU<strong>RB</strong>INE<br />

Model Part Number Whl. Inducer Whl. Exducer Trim Whl. Diameter Trim CHRA<br />

GTX4294R 800269-3 64.9mm 94.0mm 48 82.0mm 84 451888-46<br />

GTX4294R 800269-4 66.8mm 94.0mm 51 82.0mm 84 451888-47<br />

GTX4294R 800249-5 67.8mm 94.0mm 52 82.0mm 84 451888-48<br />

GTX4202R 800269-6 70.0mm 102.3mm 47 82.0mm 84 451888-49<br />

GTX4202R 800269-7 71.8mm 102.3mm 49 82.0mm 84 451888-50<br />

GTX4202R 800269-8 73.8mm 102.3mm 52 82.0mm 84 451888-51<br />

GTX4202R 800269-2 75.8mm 102.3mm 55 82.0mm 84 451888-44<br />

GTX4502R 800269-9 70.0mm 102.3mm 47 87.0mm 85 451888-52<br />

GTX4502R 800269-10 71.8mm 102.3mm 49 87.0mm 85 451888-53<br />

GTX4502R 800269-11 73.8mm 102.3mm 52 87.0mm 85 451888-54<br />

GTX4502R 800269-12 75.8mm 102.3mm 55 87.0mm 85 451888-55<br />

GTX4508R 800270-3 75.8mm 102.3mm 49 87.0mm 85 451888-57<br />

GTX4508R 800270-2 77.8mm 108.0mm 52 87.0mm 85 451888-56<br />

GTX4508R 800270-1 79.8mm 108.0mm 55 87.0mm 85 451888-45<br />

GTX4708R 804878-3 75.8mm 108.0mm 49 92.7mm 82 769210-19<br />

GTX4708R 804878-1 77.8mm 108.0mm 52 92.7mm 82 769210-17<br />

GTX4708R 804878-2 79.8mm 108.0mm 55 92.7mm 82 769210-18<br />

GT4718R 769112-11 81.8mm 117.6mm 48 92.7mm 82 769210-11<br />

GT4718R 769112-12 84.8mm 117.6mm 52 92.7mm 82 769210-12<br />

GT4718R 769112-13 87.8mm 117.6mm 53 92.7mm 82 769210-2<br />

GT5518R 775844-9 81.8mm 117.6mm 48 111.5mm 84 769210-16<br />

GT5518R 775844-8 84.8mm 117.6mm 52 111.5mm 84 769210-15<br />

GT5518R 775844-7 85.8mm 117.6mm 53 111.5mm 84 769210-14<br />

GT5518R 775844-6 87.8mm 117.6mm 56 111.5mm 84 769210-13<br />

GT5533R 775844-1 91.2mm 133.3mm 47 111.5mm 84 769210-3<br />

GT5533R 775844-2 93.8mm 133.3mm 50 111.5mm 84 769210-5<br />

GT5541R 775844-5 105.8mm 141.2mm 56 111.5mm 84 769210-7<br />

<strong>Racing</strong> rules may change without notice. Please check the latest revision of your class’ rule book for up-to-date turbocharger restrictions. Honeywell is<br />

not responsible for changes in sanctioning bodies’ rules not reflected in or purchases made in reliance upon Honeywell promotional materials.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

81


Flange Dimensions<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

Compressor Housing Inlet & Outlet Dimensions<br />

Gasket 431634-2 Gasket 431633-1<br />

All Dimension Measurements in Millimeters (mm)<br />

82 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Flange Dimensions<br />

Gasket 447802-1 Gasket 447802-1 Gasket 447802-1<br />

Turbine Housing Inlet Flanges<br />

Gasket 409039-1 Gasket 409038-1<br />

All Dimension Measurements in Millimeters (mm)<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

83


Flange Dimensions<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbine Housing Inlet Flanges & Center Housing Oil Flanges<br />

Gasket 409039-0, 409039-1 Gasket 407294-1, 407294-2 Gasket 407294-1, 407294-2<br />

Gasket 409123-2<br />

Gasket 409038-0, 409038-1<br />

Gasket 409123-2<br />

Gasket 413523-1<br />

Gasket 409267-2<br />

Gasket 409266-3<br />

Gasket 409266-3<br />

Gasket 409266-3<br />

Gasket 413709-1<br />

Gasket 409266-3<br />

Gasket 409266-3<br />

Gasket 409266-3<br />

Gasket 409266-3<br />

All Dimension Measurements in Millimeters (mm)<br />

84 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Flange Dimensions<br />

Turbine Housing Outlet Flanges<br />

Gasket 770119-1<br />

All Dimension Measurements in Millimeters (mm)<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

85


Flange Dimensions<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbine Housing Outlet Flanges & Center Housing Water Connections<br />

All Dimension Measurements in Millimeters (mm)<br />

86 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

TiAL Sport<br />

High-Performance Stainless Steel Wastegate Assemblies<br />

All TiAL<br />

wastegate<br />

assemblies are<br />

constructed with<br />

stainless steel<br />

valves and valve<br />

bodies. Actuator<br />

housings are<br />

CNC machined<br />

billet aluminum,<br />

with an optimal<br />

actuator to valve<br />

ratio or 2.2:1<br />

for maximum<br />

flow capacity.<br />

The units are<br />

also designed with high temperature Nomex<br />

diaphragms and oxidation resistant Super Alloy<br />

components.<br />

MV-S and MV-R series wastegates now<br />

feature built in water cooling ports for rock solid<br />

performance in the most extreme applications<br />

and prolonged life when used in a normal street<br />

application (not required).<br />

TiAL offers 38mm, 41mm, 44mm, 46mm and<br />

60mm wastegates to accommodate each type of<br />

application.<br />

50mm Compressor Blow-Off Valve Assemblies<br />

The TiAL<br />

Blow-Off<br />

Valve design<br />

is the result<br />

of extensive<br />

development<br />

and testing.<br />

Engine Vacuum Reading Color Use Spring<br />

-20 to -21 in/Hg Pink -11 Psi (-22 in/Hg)<br />

-16 to -19 in/Hg Un-painted -10 Psi (-20 in/Hg)<br />

-12 to -15 in/Hg White -8 Psi (-16 in/Hg)<br />

-8 to -11 in/Hg Black -6 Psi (-12 in/Hg)<br />

The 50mm compressor bypass valve is a vital component of<br />

any turbocharged blow-through induction system. This custom<br />

TiAL manufactured Blow-Off Valve will improve throttle (time to<br />

boost) response as well as help relieve the damaging effects of<br />

compressor “surge loading”. The CNC machined housings are<br />

available in anodized blue, red, silver, black and purple.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

87


Accessories<br />

<strong>Garrett</strong> ® Mechanical Boost Gauge<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

<strong>Garrett</strong> ® Turbocharger Speed Sensor<br />

The <strong>Garrett</strong> ® Mechanical Boost Gauge is the perfect<br />

addition to your interior for the important job of<br />

accurately monitoring your boost levels. The gauge<br />

has a sleek design and features a black face, white<br />

backlit numbers and a brushed aluminum ring. The<br />

gauge monitors boost from 30 Hg of vacuum to 30<br />

psi of boost.<br />

Gauge kit comes with vacuum line, hardware,<br />

mounting brace and installation instructions.<br />

Part Number 773326-1<br />

Get the most out of your turbocharger!<br />

The <strong>Garrett</strong> ® Turbocharger Speed Sensor Kit offers the ability to monitor<br />

the inner workings of your turbocharger to insure longer life and maximum<br />

performance at an affordable price! By constantly monitoring your<br />

turbocharger’s shaft speed through either a data logger or the <strong>Garrett</strong> ® -<br />

branded speed sensor gauge, you acquire a more complete picture of<br />

your turbocharger’s performance.<br />

Maximum Performance<br />

Comparing boost levels and shaft speed on a compressor map, you<br />

can determine the ideal operating conditions to insure peak power over<br />

a wider operating range. All <strong>Garrett</strong> ® Turbocharger Speed Sensor Kits<br />

are compatible with dataloggers to enhance engine tuning capability. In<br />

addition, the <strong>Garrett</strong> ® -branded gauge’s maximum speed recall function<br />

will retain the highest wheel speed for five minutes for easy mapping.<br />

The data gained from the <strong>Garrett</strong> ® Turbocharger Speed Sensor Kit can<br />

be used to closely estimate the engine’s flow behavior without a flow<br />

bench. Flow information is invaluable for determining if the turbocharger<br />

is reaching its maximum performance, for validating the turbo match, and<br />

for insuring that it is not overspeeding, allowing you to avoid potentially<br />

damaging operating conditions. This kit could even be used in conjunction<br />

with an aftermarket ECU to limit compressor speed.<br />

Easy to Use<br />

The <strong>Garrett</strong> ® Turbocharger Speed Sensor works with any turbocharger to<br />

accurately determine compressor wheel speed. The instructions include<br />

detailed drawings of the exact machining specifications for all <strong>Garrett</strong> ® GT<br />

catalog turbochargers as well as general guidelines for other compressor<br />

housing types. The <strong>Garrett</strong> ® Turbocharger Speed Sensor Kit includes all<br />

necessary wiring for easy installation and simple data logging.<br />

Two Options Available<br />

<strong>Garrett</strong> ® Turbocharger Speed Sensor Pro Kit - PN 781328-0002 includes<br />

speed sensor, wiring harness, and installation instructions.<br />

<strong>Garrett</strong> ® Turbocharger Speed Sensor Street Kit - PN 781328-0001<br />

includes speed sensor, wiring harness, installation instructions and<br />

<strong>Garrett</strong> ® -branded turbo speed gauge.<br />

88 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Intercoolers<br />

<strong>Garrett</strong> ® intercoolers have a long history with<br />

some of the premier names in the performance<br />

car industry - Roush, Saleen, Mercedes-Benz<br />

AMG, Ford SVT, GM, and McLaren have all<br />

turned to <strong>Garrett</strong> ® to intercool their hottest<br />

models.<br />

<strong>Garrett</strong> ® now offers this expertise and quality<br />

in a full range of intercool cores. From air-to-air cores<br />

sized for tightly-packed sport compact cars to air-to-water<br />

cores capable of supporting 1000+ hp, we can provide optimum<br />

performance for nearly any application.<br />

<strong>Garrett</strong> ® intercoolers also offer superior fatigue protection for the high boost pressures<br />

and temperatures of today’s extreme engines. They are constructed of high<br />

strength brazen aluminum alloys with advanced tube and fin designs to ensure<br />

greater heat transfer effectiveness and durability.<br />

Intercooler Specifications<br />

Intercooler Core<br />

Part Number<br />

Design<br />

Type<br />

Hot Flow<br />

Length (in.)<br />

No Flow<br />

Height (in.)<br />

Cold Flow<br />

Width (in.)<br />

Core Weight<br />

(lbs.)<br />

Supported<br />

Horsepower *<br />

703521-6001 Bar-Plate 6.0 12.4 4.5 9.0 180<br />

703517-6001 Bar-Plate 6.0 12.3 3.0 6.2 210<br />

703518-6015 Bar-Plate 18.0 6.4 3.0 7.3 310<br />

703517-6003 Bar-Plate 10.0 12.3 3.0 9.5 370<br />

703521-6003 Bar-Plate 10.0 12.3 4.5 13.1 375<br />

703518-6016 Bar-Plate 18.0 7.9 3.0 9.9 400<br />

703520-6025 Bar-Plate 18.0 8.0 3.5 10.8 425<br />

703518-6018 Bar-Plate 24.0 6.4 3.0 9.9 475<br />

703520-6009 Bar-Plate 24.0 6.4 3.5 11.6 500<br />

703518-6017 Bar-Plate 18.0 10.3 3.0 11.2 510<br />

753447-6004 Bar-Plate 22.0 10.5 2.3 11.8 530<br />

703520-6026 Bar-Plate 18.0 10.5 3.5 13.7 575<br />

487085-6002 Bar-Plate 20.0 11.2 3.0 15.2 600<br />

753447-6005 Bar-Plate 22.0 12.0 2.3 13.5 600<br />

703520-6010 Bar-Plate 24.0 8.0 3.5 13.8 600<br />

703518-6003 Bar-Plate 16.0 12.0 3.0 13.9 650<br />

703518-6004 Bar-Plate 18.0 12.1 3.0 15.6 750<br />

703522-6008 Bar-Plate 18.0 11.2 4.5 17.0 750<br />

717874-6008 Air-Water 11.7 3.8 3.8 6.3 750<br />

703522-6004 Bar-Plate 18.0 12.1 4.5 19.8 785<br />

703520-6011 Bar-Plate 24.0 10.5 3.5 17.8 800<br />

703518-6005 Bar-Plate 24.0 12.1 3.0 19.4 900<br />

703520-6005 Bar-Plate 24.0 12.1 3.5 20.3 925<br />

703522-6005 Bar-Plate 24.0 12.1 4.5 26.2 950<br />

486827-6002 Bar-Plate 23.7 12.0 3.8 23.7 1000<br />

734408-6005 Air-Water 11.9 4.8 4.8 8.6 1000<br />

701596-6001 Bar-Plate 27.8 12.7 5.1 31.4 1260<br />

* Horsepower rating shown for nominal operating conditions. Maximum horsepower potential may be higher than the listed values.<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

89


Turbocharger Index<br />

<strong>Garrett</strong> ®<br />

by Honeywell<br />

TU<strong>RB</strong>O<br />

TU<strong>RB</strong>O<br />

COMPRESSOR<br />

COMPRESSOR TU<strong>RB</strong>INE TU<strong>RB</strong>INE APPLICATION<br />

APPLICATION<br />

Pg. Turbo PN CHRA PN Bearing Cooling Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R Type HP Engine<br />

22 GT1241 756068-1 757864-1 Journal Oil & Water 29.0mm 41.0mm 50 0.33 35.5mm 72 0.43 Wastegated 50 - 130 0.4L - 1.2L<br />

23 GT1544 454082-2 433289-116 Journal Oil 32.9mm 43.9mm 56 0.33 42.2mm 58 0.34 Wastegated 100 - 150 1.0L - 1.6L<br />

23 GT1544 454083-2 433289-50 Journal Oil 32.9mm 43.9mm 56 0.33 42.2mm 58 0.35 Wastegated 100 - 150 1.0L - 1.6L<br />

24 GT1548 466755-3 431876-93 Journal Oil & Water 37.2mm 48.0mm 60 0.48 41.2mm 72 0.35 Wastegated 100 - 200 1.0L - 1.6L<br />

25 GT2052 727264-1 451298-43 Journal Oil 37.6mm 52.2mm 52 0.51 47.0mm 72 0.50 Wastegated 140 - 230 1.4L - 2.0L<br />

25 GT2052 727264-2 451298-43 Journal Oil 37.6mm 52.2mm 52 0.51 47.0mm 72 0.50 Wastegated 140 - 230 1.4L - 2.0L<br />

26 GT2052 727264-4 451298-45 Journal Oil 36.8mm 52.0mm 50 0.51 47.0mm 72 0.50 Wastegated 140 - 220 1.4L - 2.0L<br />

26 GT2052 727264-5 451298-45 Journal Oil 36.8mm 52.0mm 50 0.51 47.0mm 72 0.50 Wastegated 140 - 220 1.4L - 2.0L<br />

27 GT2052 727264-3 451298-44 Journal Oil 36.1mm 52.2mm 48 0.51 47.0mm 72 0.50 Wastegated 140 - 210 1.4L - 2.0L<br />

27 GT2052 727264-7 451298-44 Journal Oil 36.1mm 52.2mm 48 0.51 47.0mm 72 0.50 Wastegated 140 - 210 1.4L - 2.0L<br />

28 GT2056 751578-2 433298-234 Journal Oil 41.5mm 56.0mm 55 0.53 47.0mm 72 0.46 Wastegated 140 - 260 1.4L - 2.0L<br />

29 GT2252 452187-6 451298-6 Journal Oil 40.2mm 52.0mm 60 0.51 50.3mm 72 0.67 Wastegated 150 - 260 1.7L - 2.5L<br />

29 GT2252 Turbine Housing Option (PN 451503-1) 0.56 Free Float<br />

30 GT2259 452214-3 451298-9 Journal Oil 42.8mm 59.4mm 52 0.42 50.3mm 72 0.56 Free Float 160 - 280 1.7L - 2.5L<br />

30 GT2259 Turbine Housing Option (PN 436313-6) 0.67 Wastegated<br />

31 GT2554R 471171-3 446179-24 Ball Oil & Water 42.1mm 54.3mm 60 0.80 53.0mm 62 0.64 Wastegated 170 - 270 1.4L - 2.2L<br />

32 GT2560R 466541-1 446179-12 Ball Oil & Water 46.5mm 60.1mm 60 0.60 53.0mm 62 0.64 Wastegated 200 - 330 1.6L - 2.5L<br />

32 GT2560R 466541-4 446179-38 Ball Oil & Water 46.5mm 60.1mm 60 0.60 53.0mm 62 0.64 Wastegated 200 - 330 1.6L - 2.5L<br />

33 GT2854R 471171-9 446179-47 Ball Oil & Water 42.1mm 54.3mm 60 0.80 53.9mm 62 0.64 Wastegated 170 - 270 1.4L - 2.2L<br />

34 GT2859R 780371-1 446179-65 Ball Oil & Water 44.5mm 59.4mm 56 0.42 53.9mm 62 0.64 Wastegated 150 - 310 1.8L - 3.0L<br />

34 GT2859R 707160-9 446179-65 Ball Oil & Water 44.5mm 59.4mm 56 0.42 53.9mm 62 0.64 Wastegated 150 - 310 1.8L - 3.0L<br />

34 GT2860R Turbine Housing Option (PN 430609-230) 0.64 Wastegated<br />

34 GT2860R Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

35 GT2860R 707160-7 446179-54 Ball Oil & Water 44.6mm 60.1mm 55 0.42 53.9mm 62 0.64 Wastegated 150 - 310 1.8L - 3.0L<br />

36 GT2860R 707160-5 446179-51 Ball Oil & Water 47.2mm 60.0mm 62 0.60 53.9mm 76 0.64 Wastegated 250 - 360 1.8L - 3.0L<br />

36 GT2860R Turbine Housing Option (PN 430609-230) 0.64 Wastegated<br />

36 GT2860R Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

37 GT2860R 739548-9 446179-66 Ball Oil & Water 47.2mm 60.1mm 62 0.60 53.9mm 76 0.64 Wastegated 250 - 360 1.8L - 3.0L<br />

37 GT2860R Turbine Housing Option (PN 430609-230) 0.64 Wastegated<br />

37 GT2860R Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

38 GT2860RS 739548-1 446179-66 Ball Oil & Water 47.2mm 60.1mm 62 0.60 53.9mm 76 0.86 Wastegated 250 - 360 1.8L - 3.0L<br />

38 GT2860RS 739548-5 446179-66 Ball Oil & Water 47.2mm 60.1mm 62 0.60 53.9mm 76 0.64 Wastegated 250 - 360 1.8L - 3.0L<br />

38 GT2860RS Turbine Housing Option (PN 430609-230) 0.64 Wastegated<br />

38 GT2860RS Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

39 GT2871R 472560-15 446179-67 Ball Oil & Water 51.2mm 71.0mm 52 0.60 53.9mm 76 0.64 Wastegated 280 - 460 1.8L - 3.0L<br />

39 GT2871R 771847-1 446179-67 Ball Oil & Water 51.2mm 71.0mm 52 0.60 53.9mm 76 0.64 Wastegated 280 - 460 1.8L - 3.0L<br />

39 GT2871R Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

40 GT2871R 780371-2 446179-67 Ball Oil & Water 51.2mm 71.0mm 56 0.60 53.9mm 76 0.64 Wastegated 280 - 475 1.8L - 3.0L<br />

40 GT2871R 707160-10 446179-67 Ball Oil & Water 51.2mm 71.0mm 56 0.60 53.9mm 76 0.64 Wastegated 280 - 475 1.8L - 3.0L<br />

40 GT2871R Turbine Housing Option (PN 430609-230) 0.64 Wastegated<br />

40 GT2871R Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

41 GT2871R 743347-1 446179-31 Ball Oil & Water 49.2mm 71.0mm 48 0.60 53.9mm 76 0.86 Wastegated 250 - 400 1.8L - 3.0L<br />

41 GT2871R 743347-3 446179-31 Ball Oil & Water 49.2mm 71.0mm 48 0.60 53.9mm 76 0.64 Wastegated 250 - 400 1.8L - 3..0L<br />

41 GT2871R Turbine Housing Option (PN 430609-230) 0.64 Wastegated<br />

41 GT2871R Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

42 GT2871R 743347-2 446179-32 Ball Oil & Water 53.1mm 71.0mm 56 0.60 53.9mm 76 0.86 Wastegated 280 - 475 1.8L - 3.0L<br />

42 GT2871R 743347-4 446179-32 Ball Oil & Water 53.1mm 71.0mm 56 0.60 53.9mm 76 0.64 Wastegated 280 - 475 1.8L - 3.0L<br />

42 GT2871R Turbine Housing Option (PN 430609-230) 0.64 Wastegated<br />

42 GT2871R Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

43 GT2876R 705330-1 446179-18 Ball Oil & Water 52.8mm 76.1mm 48 0.70 53.9mm 76 0.64 Wastegated 280 - 480 1.8L - 3.0L<br />

43 GT2876R 705330-2 446179-18 Ball Oil & Water 52.8mm 76.1mm 48 0.70 53.9mm 76 0.86 Wastegated 280 - 480 1.8L - 3.0L<br />

43 GT2876R Turbine Housing Option (PN 430609-230) 0.64 Wastegated<br />

43 GT2876R Turbine Housing Option (PN 430609-231) 0.86 Wastegated<br />

44 GT3071R - 700177-23 Ball Oil & Water 53.1mm 71.0mm 56 - 60.0mm 84 - - 300 - 460 1.8L - 3.0L<br />

44 GT3071R Compressor Housing Option (PN 756021-1) 2.75” Hose 2.00” Hose 0.50<br />

44 GT3071R Compressor Housing Option (PN 756021-2) 4.00” Hose 2.00” Hose 0.50<br />

45 GT3071R 700382-3 700177-3 Ball Oil & Water 53.1mm 71.0mm 56 0.50 56.5mm 84 0.64 Wastegated 280 - 480 1.8L - 3.0L<br />

45 GT3071R 700382-20 700177-4 Ball Oil & Water 53.1mm 71.0mm 56 0.50 56.5mm 90 0.86 Wastegated 280 - 480 1.8L - 3.0L<br />

45 GT3071R Compressor Housing Kit Option (PN 756021-1) 2.75” Hose 2.00” Hose 0.50<br />

45 GT3071R Compressor Housing Kit Option (PN 756021-2) 4.00” Hose 2.00” Hose 0.50<br />

46 GTX3071R 803712-1 700177-46 Ball Oil & Water 54.1mm 71.4mm 58 0.60 60.0mm 84 - - 340 - 560 1.8L - 3.0L<br />

47 GT3076R 700382-12 700177-7 Ball Oil & Water 57.0mm 76.2mm 56 0.60 60.0mm 84 - - 310 - 525 1.8L - 3.0L<br />

48 GTX3076R 803713-1 700177-42 Ball Oil & Water 58.0mm 76.6mm 58 0.60 60.0mm 84 - - 360 - 640 1.8L - 3.0L<br />

- GT(X)30R Turbine Housing Option (PN 740902-1) 1.06 Free Float<br />

- GT(X)30R Turbine Housing Option (PN 740902-2) 0.82 Free Float<br />

- GT(X)30R Turbine Housing Option (PN 740902-3) 0.63 Free Float<br />

- GT(X)30R Turbine Housing Option (PN 740902-7) 1.06 Free Float<br />

- GT(X)30R Turbine Housing Option (PN 740902-8) 0.82 Free Float<br />

- GT(X)30R Turbine Housing Option (PN 740902-9) 0.63 Free Float<br />

- GT(X)30R Turbine Housing Option (PN 740902-13) 1.02 Free Float<br />

- GT(X)30R Turbine Housing Option (PN 740902-14) 0.82 Free Float<br />

- GT(X)30R Turbine Housing Option (PN 740902-15) 0.63 Free Float<br />

49 GT3271 452203-1 436058-3 Journal Oil 51.2mm 71.0mm 52 0.50 64.0mm 73 0.78 Wastegated 200 - 420 2.0L - 3.0L<br />

49 GT3271 Turbine Housing Option (PN 451225-26) 0.78 Free Float<br />

49 GT3271 Turbine Housing Option (PN 435066-32) 0.69 Wastegated<br />

50 GT3582R 714568-1 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 1.06 Free Float 400 - 600 2.0L - 4.5L<br />

50 GT3582R 714568-2 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 0.82 Free Float 400 - 600 2.0L - 4.5L<br />

50 GT3582R 714568-3 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 0.63 Free Float 400 - 600 2.0L - 4.5L<br />

51 GT3582R 714568-7 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 1.06 Free Float 400 - 675 2.0L - 4.5L<br />

51 GT3582R 714568-8 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 0.82 Free Float 400 - 675 2.0L - 4.5L<br />

51 GT3582R 714568-9 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 0.63 Free Float 400 - 675 2.0L - 4.5L<br />

52 GT3582R 714568-10 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 1.06 Free Float 400 - 675 2.0L - 4.5L<br />

52 GT3582R 714568-11 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 0.82 Free Float 400 - 675 2.0L - 4.5L<br />

52 GT3582R 714568-12 706451-5 Ball Oil & Water 61.4mm 82.0mm 56 0.70 68.0mm 84 0.63 Free Float 400 - 675 2.0L - 4.5L<br />

53 GTX3582R 803715-1 706451-34 Ball Oil & Water 62.5mm 82.5mm 56 0.70 68.0mm 84 - - 450 - 750 2.0L - 4.5L<br />

90 www.TurboBy<strong>Garrett</strong>.com<br />

Honeywell


<strong>Garrett</strong> ®<br />

by Honeywell<br />

Turbocharger Index<br />

TU<strong>RB</strong>O COMPRESSOR TU<strong>RB</strong>INE APPLICATION<br />

Pg Turbo PN CHRA PN Bearing Cooling Ind Whl Dia Exd Whl Dia Trim A/R Whl Dia Trim A/R Type HP Engine<br />

- GT(X)35R Turbine Housing Option (PN 740902-4) 1.06 Free Float<br />

- GT(X)35R Turbine Housing Option (PN 740902-5) 0.82 Free Float<br />

- GT(X)35R Turbine Housing Option (PN 740902-6) 0.63 Free Float<br />

- GT(X)35R Turbine Housing Option (PN 740902-10) 1.06 Free Float<br />

- GT(X)35R Turbine Housing Option (PN 740902-11) 0.82 Free Float<br />

- GT(X)35R Turbine Housing Option (PN 740902-12) 0.63 Free Float<br />

- GT(X)35R Turbine Housing Option (PN 740902-16) 1.06 Free Float<br />

- GT(X)35R Turbine Housing Option (PN 740902-17) 0.82 Free Float<br />

- GT(X)35R Turbine Housing Option (PN 740902-18) 0.63 Free Float<br />

54 GT3776 452159-1 436085-1 Journal Oil 55.0mm 76.2mm 52 0.54 72.5mm 84 1.12 Free Float 320 - 500 2.0L - 4.0L<br />

55 GT3782 452159-3 436085-5 Journal Oil 59.1mm 82.0mm 52 0.54 72.5mm 84 1.12 Free Float 350 - 550 2.0L - 4.0L<br />

56 GT3788R 772719-1 751451-12 Ball Oil & Water 63.5mm 88.0mm 52 0.72 72.5mm 78 0.89 Free Float 400 - 675 2.0L - 5.0L<br />

56 GT3788R 772719-2 751457-12 Ball Oil & Water 63.5mm 88.0mm 52 0.72 72.5mm 78 0.99 Free Float 400 - 675 2.0L - 5.0L<br />

56 GT3788R 772719-3 751457-12 Ball Oil & Water 63.5mm 88.0mm 52 0.72 72.5mm 78 1.11 Free Float 400 - 675 2.0L - 5.0L<br />

57 GT4088R 751470-1 741450-9 Ball Oil & Water 63.5mm 88.0mm 52 0.72 77.0mm 78 0.85 Free Float 400 - 675 2.0L - 6.0L<br />

57 GT4088R 751470-2 751450-9 Ball Oil & Water 63.5mm 88.0mm 52 0.72 77.0mm 78 0.95 Free Float 400 - 675 2.0L - 6.0L<br />

57 GT4088R 751470-3 751450-9 Ball Oil & Water 63.5mm 88.0mm 52 0.72 77.0mm 78 1.06 Free Float 400 - 675 2.0L - 6.0L<br />

57 GT4088R 751470-4 751450-9 Ball Oil & Water 63.5mm 88.0mm 52 0.72 77.0mm 78 1.19 Free Float 400 - 675 2.0L - 6.0L<br />

58 GT4088 703457-2 449739-34 Journal Oil 64.7mm 88.0mm 54 0.72 77.6mm 83 1.34 Free Float 400 - 725 2.0L - 6.0L<br />

58 GT4088 Turbine Housing Option (PN 434309-88) 1.19 Free Float<br />

59 GT4094R 751470-19 751450-16 Ball Oil & Water 67.8mm 94.0mm 52 0.72 77.0mm 78 0.85 Free Float 450 - 800 2.0L - 6.0L<br />

59 GT4094R 751470-20 751450-16 Ball Oil & Water 67.8mm 94.0mm 52 0.72 77.0mm 78 0.95 Free Float 450 - 800 2.0L - 6.0L<br />

59 GT4094R 751470-21 751450-16 Ball Oil & Water 67.8mm 94.0mm 52 0.72 77.0mm 78 1.06 Free Float 450 - 800 2.0L - 6.0L<br />

59 GT4094R 751470-22 751450-16 Ball Oil & Water 67.8mm 94.0mm 52 0.72 77.0mm 78 1.19 Free Float 450 - 800 2.0L - 6.0L<br />

- GT40R Turbine Housing Option (PN 448375-18) 0.85 Free Float<br />

- GT40R Turbine Housing Option (PN 448375-19) 0.95 Free Float<br />

- GT40R Turbine Housing Option (PN 448375-20) 1.06 Free Float<br />

- GT40R Turbine Housing Option (PN 448375-21) 1.19 Free Float<br />

60 GT4294 731376-1 712402-7 Journal Oil 70.3mm 94.0mm 56 0.60 82.0mm 84 1.15 Free Float 425 - 850 2.0L - 7.0L<br />

61 GT4294R 774595-1 451888-9 Ball Oil & Water 70.3mm 94.0mm 56 0.60 82.0mm 84 1.01 Free Float 425 - 850 2.0L - 7.0L<br />

61 GT4294R 774595-2 451888-9 Ball Oil & Water 70.3mm 94.0mm 56 0.60 82.0mm 84 1.15 Free Float 425 - 850 2.0L - 7.0L<br />

61 GT4294R 774595-3 451888-9 Ball Oil & Water 70.3mm 94.0mm 56 0.60 82.0mm 84 1.28 Free Float 425 - 850 2.0L - 7.0L<br />

61 GT4294R 774595-4 451888-9 Ball Oil & Water 70.3mm 94.0mm 56 0.60 82.0mm 84 1.44 Free Float 425 - 850 2.0L - 7.0L<br />

62 GTX4294R 800269-1 451888-43 Ball Oil & Water 70.3mm 94.0mm 56 0.60 82.0mm 84 - - 475 - 950 2.0L - 7.0L<br />

63 GT4202 731376-2 712402-8 Journal Oil 74.7mm 102.3mm 53 0.60 82.0mm 84 1.15 Free Float 450 - 1000 2.0L - 7.0L<br />

64 GT4202R 774595-5 451888-11 Ball Oil & Water 74.7mm 102.3mm 53 0.60 82.0mm 84 1.01 Free Float 450 - 1000 2.0L - 7.0L<br />

64 GT4202R 744595-6 451888-11 Ball Oil & Water 74.7mm 102.3mm 53 0.60 82.0mm 84 1.15 Free Float 450 - 1000 2.0L - 7.0L<br />

64 GT4202R 744595-7 451888-11 Ball Oil & Water 74.7mm 102.3mm 53 0.60 82.0mm 84 1.28 Free Float 450 - 1000 2.0L - 7.0L<br />

64 GT4202R 744595-8 451888-11 Ball Oil & Water 74.7mm 102.3mm 53 0.60 82.0mm 84 1.44 Free Float 450 - 1000 2.0L - 7.0L<br />

65 GTX4202R 800269-2 451888-44 Ball Oil & Water 75.8mm 102.3mm 55 0.60 82.0mm 84 - - 525 - 1150 2.0L - 7.0L<br />

- GT(X)42(R) Turbine Housing Option (PN 757707-1) 1.01 Free Float<br />

- GT(X)42(R) Turbine Housing Option (PN 757707-2) 1.15 Free Float<br />

- GT(X)42(R) Turbine Housing Option (PN 757707-3) 1.28 Free Float<br />

- GT(X)42(R) Turbine Housing Option (PN 757707-4) 1.44 Free Float<br />

- GT(X)42(R) Turbine Housing Option (PN 757707-10) 1.01 Free Float<br />

- GT(X)42(R) Turbine Housing Option (PN 757707-9) 1.15 Free Float<br />

66 GT4508R 774596-1 451888-28 Ball Oil & Water 79.8mm 108.0mm 55 0.69 87.0mm 85 1.01 Free Float 600 - 1100 2.0L - 8.0L<br />

66 GT4508R 774596-2 451888-28 Ball Oil & Water 79.8mm 108.0mm 55 0.69 87.0mm 85 1.15 Free Float 600 - 1100 2.0L - 8.0L<br />

66 GT4508R 774596-3 451888-28 Ball Oil & Water 79.8mm 108.0mm 55 0.69 87.0mm 85 1.28 Free Float 600 - 1100 2.0L - 8.0L<br />

66 GT4508R 774596-4 451888-28 Ball Oil & Water 79.8mm 108.0mm 55 0.69 87.0mm 85 1.44 Free Float 600 - 1100 2.0L - 8.0L<br />

67 GTX4508R 800270-1 451888-45 Ball Oil & Water 79.8mm 108.0mm 55 0.69 87.0mm 85 - - 700 - 1250 2.0L - 8.0L<br />

- GT(X)45R Turbine Housing Option (PN 757707-5) 1.01 Free Float<br />

- GT(X)45R Turbine Housing Option (PN 757707-6) 1.15 Free Float<br />

- GT(X)45R Turbine Housing Option (PN 757707-7) 1.28 Free Float<br />

- GT(X)45R Turbine Housing Option (PN 757707-8) 1.44 Free Float<br />

68 GT4708 763740-3 767564-1 Journal Oil 79.8mm 108.0mm 55 0.69 92.7mm 82 0.96 Free Float 700 - 1150 2.5L - 10.0L<br />

68 GT4708 763740-4 767564-1 Journal Oil 79.8mm 108.0mm 55 0.69 92.7mm 82 1.08 Free Float 700 - 1150 2.5L - 10.0L<br />

68 GT4708 763740-5 767564-1 Journal Oil 79.8mm 108.0mm 55 0.69 92.7mm 82 1.23 Free Float 700 - 1150 2.5L - 10.0L<br />

68 GT4708 763740-6 767564-1 Journal Oil 79.8mm 108.0mm 55 0.69 92.7mm 82 1.39 Free Float 700 - 1150 2.5L - 10.0L<br />

69 GT4708R 769112-1 769210-1 Ball Oil 79.8mm 108.0mm 55 0.69 92.7mm 82 0.96 Free Float 700 - 1150 2.5L - 10.0L<br />

69 GT4708R 769112-2 769210-1 Ball Oil 79.8mm 108.0mm 55 0.69 92.7mm 82 1.08 Free Float 700 - 1150 2.5L - 10.0L<br />

69 GT4708R 769112-3 769210-1 Ball Oil 79.8mm 108.0mm 55 0.69 92.7mm 82 1.23 Free Float 700 - 1150 2.5L - 10.0L<br />

69 GT4708R 769112-4 769210-1 Ball Oil 79.8mm 108.0mm 55 0.69 92.7mm 82 1.39 Free Float 700 - 1150 2.5L - 10.0L<br />

70 GT4718 763740-7 767564-2 Journal Oil 87.8mm 117.6mm 56 0.69 92.7mm 82 0.96 Free Float 800 - 1350 2.5L - 10.0L<br />

70 GT4718 763740-8 767564-2 Journal Oil 87.8mm 117.6mm 56 0.69 92.7mm 82 1.08 Free Float 800 - 1350 2.5L - 10.0L<br />

70 GT4718 763740-9 767564-2 Journal Oil 87.8mm 117.6mm 56 0.69 92.7mm 82 1.23 Free Float 800 - 1350 2.5L - 10.0L<br />

70 GT4718 763740-10 767564-2 Journal Oil 87.8mm 117.6mm 56 0.69 92.7mm 82 1.39 Free Float 800 - 1350 2.5L - 10.0L<br />

71 GT4718R 769112-5 769210-2 Ball Oil 87.8mm 117.6mm 56 0.69 92.7mm 82 0.96 Free Float 850 - 1350 2.5L - 10.0L<br />

71 GT4718R 769112-6 769210-2 Ball Oil 87.8mm 117.6mm 56 0.69 92.7mm 82 1.08 Free Float 850 - 1350 2.5L - 10.0L<br />

71 GT4718R 769112-7 769210-2 Ball Oil 87.8mm 117.6mm 56 0.69 92.7mm 82 1.23 Free Float 850 - 1350 2.5L - 10.0L<br />

71 GT4718R 769112-8 769210-2 Ball Oil 87.8mm 117.6mm 56 0.69 92.7mm 82 1.39 Free Float 850 - 1350 2.5L - 10.0L<br />

- GT47(R) Turbine Housing Option (PN 761208-9) 0.96 Free Float<br />

- GT47(R) Turbine Housing Option (PN 761208-10) 1.08 Free Float<br />

- GT47(R) Turbine Housing Option (PN 761208-11) 1.23 Free Float<br />

- GT47(R) Turbine Housing Option (PN 761208-12) 1.39 Free Float<br />

72 GT5533R 769115-2 769210-3 Ball Oil 91.2mm 133.3mm 47 0.69 111.5mm 84 1.00 Free Float 850 - 1550 3.0L - 12.0L<br />

73 GT5533R 769115-7 769210-5 Ball Oil 93.8mm 133.3mm 49.5 0.81 111.5mm 84 1.00 Free Float 1100 - 1700 3.0L - 12.0L<br />

74 GT5541R 777210-12 769210-7 Ball Oil 105.8mm 141.0mm 56 0.81 111.5mm 84 1.00 Free Float 1200 - 1800 3.0L - 12.0L<br />

75 GT6041 731377-2 730496-1 Journal Oil 105.7mm 141.2mm 56 1.05 129.5mm 84 1.25 Free Float 1350 - 2000 6.0L - 12.0L<br />

76 T04BR - 757197-1 Ball Oil & Water 59.0mm 76.1mm 60 - 74.2mm 76 - -<br />

76 T04ZR - 740759-2 Ball Oil & Water 66.7mm 84.0mm 63 - 74.2mm 76 - -<br />

76 T3/T4R - 757197-2 Ball Oil & Water 56.6mm 75.0mm 57 - 65.0mm 76 - -<br />

76 T3/T4R - 757197-3 Ball Oil & Water 58.0mm 75.0mm 60 - 65.0mm 76 - -<br />

76 T3/T4R - 757197-4 Ball Oil & Water 53.9mm 76.0mm 50 - 65.0mm 76 - -<br />

76 T3/T4R - 757197-5 Ball Oil & Water 59.0mm 76.1mm 60 - 65.0mm 76 - -<br />

76 T350R - 757197-7 Ball Oil & Water 59.0mm 76.1mm 60 - 71.0mm 76 - -<br />

Honeywell<br />

www.TurboBy<strong>Garrett</strong>.com<br />

91

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!