07.11.2014 Views

Share conversion, pseudorandom secret-sharing and ... - of the NVTI

Share conversion, pseudorandom secret-sharing and ... - of the NVTI

Share conversion, pseudorandom secret-sharing and ... - of the NVTI

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Share</strong> <strong>conversion</strong>, <strong>pseudor<strong>and</strong>om</strong> <strong>secret</strong>-sha<br />

applications to secure distributed comp<br />

Ronald Cramer (CWI & Leiden University), Ivan<br />

(Aarhus University), Yuval Ishai (Technion<br />

Friday, February 11, 2005


Consider all<br />

(t; n) Replicated <strong>secret</strong> <strong>sharing</strong><br />

n<br />

t<br />

<strong>the</strong>se subsets cells.<br />

subsets B f1; : : : ; ng with jBj =<br />

Additively <strong>secret</strong>-share <strong>the</strong> <strong>secret</strong> s, where each<br />

<strong>of</strong> <strong>the</strong> shares.<br />

In o<strong>the</strong>r words <strong>the</strong> i-th share is replicated among<br />

in <strong>the</strong> i-th cell B i .<br />

Thus: s = P B s B ; <strong>and</strong> player P j holds fs B g B:j2B


Privacy:<br />

Consider A f1; : : : ; ng with jAj = t.<br />

There is a cell B that has empty intersection wit<br />

B = f1; : : : ; ng n A<br />

So, A lack <strong>the</strong> share s B .


Reconstruction:<br />

All players jointly can determine <strong>the</strong> <strong>secret</strong> s.<br />

With n > 2t: <strong>the</strong> intersection <strong>of</strong> any two cells is<br />

So each B jointly have all shares, <strong>and</strong> can can r<br />

[Example: if n = 2t + 1, <strong>the</strong>n t-private, > t reco


n > 3t ) perfect recovery from malicious erro<br />

struction:<br />

{ In each cell, <strong>the</strong>re is a majority <strong>of</strong> good guys (n<br />

{ So nd correct s B by local \majority voting"<br />

shares received from members <strong>of</strong> B<br />

Drawback: eciency proportional to<br />

n<br />

t<br />

.


Why interested in this scheme...???<br />

After all...<strong>the</strong>re is Shamir's scheme..<br />

Ito/Nishizeki/Saito: introduced general, non-thresho<br />

ing <strong>secret</strong> <strong>sharing</strong> (m-out-<strong>of</strong> m additive <strong>sharing</strong> within<br />

ied set")<br />

Beaver/Wool: simple protocol for MPC, passive ad<br />

eral adversary<br />

Maurer: extension to active case


But: only makes sense when n is small (or more gen<br />

t is small).<br />

Moreover, in all <strong>the</strong>se cases more ecient solution<br />

by more sophisticated techniques<br />

Good reasons to revisit this technique to follow...


Pseudo-r<strong>and</strong>om <strong>secret</strong> <strong>sharing</strong><br />

Unbounded source <strong>of</strong> <strong>sharing</strong>s <strong>of</strong> r<strong>and</strong>om <strong>secret</strong>s, no<br />

Trusted Initialization: replace share s B by a pse<br />

function G B (¡).<br />

Dene<br />

s(¡) = X B<br />

G B (¡):<br />

Notation: suppress globally agreed argument (¡)<br />

Variation: seeds for pseudo-r<strong>and</strong>om number gen


Pseudo-r<strong>and</strong>om <strong>secret</strong> <strong>sharing</strong> introduced earlier byM<br />

<strong>and</strong> fur<strong>the</strong>r studied by Ishai/Gilboa,..<br />

Here: we develop enhanced pseudo-r<strong>and</strong>om <strong>secret</strong> sh<br />

<strong>and</strong> give new applications <strong>of</strong> pseudo-r<strong>and</strong>om <strong>secret</strong><br />

taking interaction out <strong>of</strong> certain secure computation<br />

crypto-systems, without paying a penalty in commu


Application I: Pseudo-r<strong>and</strong>om VSS with t <<br />

Give all pseudo-r<strong>and</strong>om functions to a single desig<br />

(<strong>the</strong> dealer): non-interactive VSS <strong>of</strong> r<strong>and</strong>om sec<br />

by dealer.<br />

Adaptation to <strong>secret</strong> s <strong>of</strong> his choice: dealer bro<br />

rection value s r.<br />

Players adapt <strong>the</strong>ir shares locally using linearity:<br />

Reconstruction in presence <strong>of</strong> malicious errors:<br />

error correction


Application II: Non-interactive secure multiplication<br />

Here: n > 4t. Adversary actively corrupts at most t<br />

Intersection <strong>of</strong> any two cells contains majority o<br />

For each pair <strong>of</strong> cells B; B 0 , designate a (unique)<br />

B \ B 0 <strong>of</strong> size 2t + 1. Call this a subcell.<br />

Initialization: for each subcell, replicate a fresh<br />

<strong>the</strong> pseudo-r<strong>and</strong>om VSS set-up.


Starting condition: <strong>sharing</strong>s <strong>of</strong> ; in <strong>the</strong> repli<br />

<strong>sharing</strong> scheme. Thus:<br />

= X B<br />

B ;<br />

= X B<br />

B ; ¡ = X B;B 0 B ¡<br />

Basic Idea:<br />

For each subcell C: usual re-<strong>sharing</strong> <strong>of</strong> local prod<br />

but done with pseudo-r<strong>and</strong>om VSS instead<br />

Re-<strong>sharing</strong>s <strong>of</strong> a correct local products occur in<br />

This is due to pseudo-r<strong>and</strong>om VSS replicas; re<br />

voting over <strong>the</strong> broadcasted correction value<br />

Bunch it up non-interactively to a <strong>sharing</strong> <strong>of</strong> th


Note 1: No broadcast needed here in pseudo-r<strong>and</strong>o<br />

Note 2:<br />

r<strong>and</strong>om approach)<br />

(information <strong>the</strong>oretic pre-processing ver<br />

preprocessing leads to apriori bounded horizon, pse<br />

ness makes it ongoing, unbounded horizon


Compressed pseudo-r<strong>and</strong>om <strong>secret</strong> sharin<br />

New feature: share size \as in Shamir', still non-int<br />

Only local computation proportional to<br />

n<br />

t<br />

For each cell B, choose xed polynomial f B so t<br />

1. deg(f) = t<br />

2. f(0) = 1 but f(i) = 0 if i 62 B<br />

Dene<br />

f(X) = X B<br />

s B ¡ f B (X)


Player P i can compute his Shamir-share from his sha<br />

replication based scheme:<br />

X<br />

B:i2B<br />

X<br />

B<br />

f(i) =<br />

s B ¡ f B (i) =<br />

X<br />

s B ¡ f B (i) + s B ¡ f B (i) =<br />

X<br />

B:i62B<br />

= s B ¡ f B (i)<br />

B:i2B<br />

Privacy: <strong>the</strong> info held by A f1; : : : ; ng with jAj =<br />

least one r<strong>and</strong>om coin in <strong>the</strong> expression for f(X)...


Compressed pseudo-r<strong>and</strong>om VSS<br />

This works as before (non-interactive), with n > 3t<br />

All pseudo-r<strong>and</strong>om functions given to designated pl<br />

Broadcast dierence <strong>of</strong> pseudo-r<strong>and</strong>om <strong>secret</strong> <strong>and</strong><br />

terest<br />

Reconstruction: ecient Reed-Solomon decoding (s<br />

Welch)


Compressed non-interactive secure multiplic<br />

n > 4t<br />

Adversary actively corrupts t players<br />

Initialization: compressed pseudo-r<strong>and</strong>om secre<br />

place (actually, a small variation...)<br />

Input:(t; n)-Shamir <strong>sharing</strong>s<br />

<strong>of</strong> <strong>secret</strong>s ; <br />

( 1 ; : : : ; n ); ( 1 ; : : : ; n )<br />

Output: ¡ .


Pseudo-r<strong>and</strong>om zero-<strong>sharing</strong>: (with n > 4t) creation<br />

deg 2t Shamir-<strong>sharing</strong> <strong>of</strong> <strong>the</strong> value 0.<br />

For each cell B, choose a xed basis <strong>of</strong> polynomia<br />

for <strong>the</strong> vector space <strong>of</strong> polynomials f with<br />

1. deg(f) 2t<br />

2. f(0) = 0<br />

3. f(i) = 0 if i 62 B


Instead <strong>of</strong> a single one, h<strong>and</strong> pseudo-r<strong>and</strong>om fu<br />

to <strong>the</strong> players in B.<br />

G 1 B (¡); : : : ; Gt B (¡)<br />

Dene<br />

f(X) = X B<br />

tX<br />

i=1<br />

s i B ¡ f i B (X)


Compressed secure multiplication is now easy, by sta<br />

nique plus masking using pseudo-r<strong>and</strong>om zero-shari<br />

i : player i's share in <strong>the</strong> pseudo-r<strong>and</strong>om zero-s<br />

Masking: player i computes<br />

sends it to all players<br />

i ¡ i + i ;<br />

Each player on his own applies Berlekamp-Welch<br />

correction.


Indeed:<br />

f: polynomial for zero-<strong>sharing</strong><br />

f ; f : polynomials for <strong>sharing</strong> <strong>of</strong> ; <br />

So f ¡ f + f <strong>of</strong> degree 2t,<br />

we have n > 4t points with t errors.<br />

So <strong>the</strong> error correction is possible.<br />

This way, each player obtains a polynomial who<br />

is ¡ .<br />

Generalization: non-interactive secure computation<br />

bi-variate polynomials


Theoretical Results on <strong>Share</strong> Compressio<br />

Thm.: Pseudo-r<strong>and</strong>om <strong>secret</strong> <strong>sharing</strong> schemes<br />

pressed to any linear <strong>secret</strong> <strong>sharing</strong> scheme<br />

Pro<strong>of</strong>: generalize <strong>the</strong> Shamir compression usin<br />

monotone span programs<br />

Thm.:<br />

Our approach is optimal in <strong>the</strong> model<br />

player gets a subset <strong>of</strong> a given collection <strong>of</strong> in<br />

distributed r<strong>and</strong>om sources<br />

Pro<strong>of</strong>: By information <strong>the</strong>oretic arguments: # ra<br />

# maximal unqualied sets


Application to non-interactive threshold cry<br />

Non-interactive version <strong>of</strong> <strong>the</strong> threshold-CS98 f<br />

Goldwasser:<br />

test <strong>of</strong> validity <strong>of</strong> ciphertext by non-interactive<br />

tionby (compressed secure multiplication \in <strong>the</strong><br />

Communication-ecient variant <strong>of</strong> Naor/Pinkas/<br />

tributed Pseudo-R<strong>and</strong>om Function<br />

Threshold signatures without r<strong>and</strong>om oracles bas<br />

Boyen scheme.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!