08.11.2014 Views

Predicting Greenhouse Gas Emissions From Flares - SCS Global ...

Predicting Greenhouse Gas Emissions From Flares - SCS Global ...

Predicting Greenhouse Gas Emissions From Flares - SCS Global ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Predicting</strong> <strong>Greenhouse</strong> <strong>Gas</strong><br />

<strong>Emissions</strong> from <strong>Flares</strong><br />

Matthew Johnson, Ph.D., P.Eng.<br />

Mechanical & Aerospace Engineering<br />

Carleton University


Flaring in Alberta<br />

• Although there have been significant reductions<br />

in previous years, in 2003, 1.4 billion m 3 of gas<br />

were flared or vented in Alberta<br />

(843 million m 3 of solution gas)<br />

(AEUB, ST60B, 2004)


<strong>Greenhouse</strong> <strong>Gas</strong> <strong>Emissions</strong><br />

• Worldwide an estimated 76 billion m 3 of gas<br />

were flared or vented in 2002<br />

• Significant source of CO 2<br />

equivalent emissions


Project Objective<br />

• Develop a research backed protocol for<br />

estimating greenhouse gas (CO 2 equivalent<br />

emissions) from solution gas flares<br />

– Extend results of previous windtunnel based research<br />

with large parametric data set<br />

– Continue to evolve and improve parametric efficiency<br />

model<br />

• Project is possible because data base of fully-<br />

controlled, parametric experiments exists!


Previous Work<br />

• Research focussed on carbon conversion<br />

efficiency<br />

Mass of Carbon Converted to CO2<br />

η =<br />

Mass of Carbon Originally as Fuel<br />

• Significant progress in quantifying efficiencies of<br />

non-sooting flares under a range of conditions<br />

– Crosswind, Diameter, Exit Velocity, Basic fuel<br />

composition (sweet), Diluent content


Previous Work<br />

• Fuel stripping mechanism identified responsible<br />

for emissions of raw flare gas<br />

• Semi-empirical empirical flare efficiency model developed<br />

(Johnson & Kostiuk, P. Comb. Inst. 2002) and<br />

verified at full scale<br />

⎡<br />

3<br />

LHV mass<br />

= A⋅<br />

exp⎢B<br />

⎢⎣<br />

( ) ( )<br />

1 −η<br />

⋅<br />

∞<br />

⎤<br />

( d )<br />

1/ 3<br />

⎥ ⎥ j o ⎦<br />

gV<br />

U


Efficiency<br />

Model<br />

• Correlation<br />

effectively collapses<br />

widely varied data<br />

(1-η)(LHV mass ) 3 (MJ/kg) 3<br />

• Data includes<br />

n.g. + CO 2<br />

n.g. + N 2<br />

C 3 H 8 + CO 2<br />

C 3 H 8 + N 2<br />

C 2 H 6 + N 2<br />

2 ≤ U ∞ ≤ 17 m/s<br />

0.5 ≤ V j ≤ 4 m/s<br />

12.2 ≤ d o ≤ 49 mm<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

0<br />

Natural gas based fuel<br />

Propane based fuel<br />

Ethane based fuel<br />

(0.317 X)<br />

Y = 156.4 e<br />

(0.272 X)<br />

Y = 32.06 e<br />

LHVmassCorr-Qorf-2-UgVD13.GRF<br />

0 5 10 15 20 25<br />

U ∞ / (g V j d o ) 1/3


<strong>Greenhouse</strong> <strong>Gas</strong>es (GHG)<br />

• Kyoto Accord specifically names six gases /<br />

types of gases that contribute to global warming<br />

– carbon dioxide (CO 2 );<br />

– methane (CH 4 );<br />

– nitrous oxide (N 2 O);<br />

– hydrofluorocarbons (HFCs);<br />

– perfluorocarbons (PFCs); and<br />

– sulphur hexafluoride (SF 6 ).<br />

• Climate forcing also occurs from other<br />

substances not yet named in the Kyoto Accord


GHGs Relevant for Flare <strong>Emissions</strong><br />

• Principle contributors are carbon dioxide and<br />

methane<br />

• Other species may be relevant based on IPCC<br />

data but do not have accepted GWP values and<br />

are not included in Kyoto Accord:<br />

– CO and particulate matter (Direct climate forcing)<br />

– NOx and SO 2 (Indirect climate forcing)<br />

• In line with Kyoto, consider CO 2 and CH 4 only


<strong>Global</strong> Warming Potentials (GWPs(<br />

GWPs)<br />

• Relative measure of climate forcing of 1kg of<br />

substance compared to 1kg of CO 2<br />

– Usually defined on a 100 year time horizon<br />

– Established by Intergovernmental Panel on Climate<br />

Change (IPCC)<br />

– Used to make GHG calculations on a CO 2 equivalent<br />

basis<br />

<strong>Gas</strong><br />

Lifetime<br />

(years)<br />

<strong>Global</strong> Warming Potential<br />

(Time horizon in years)<br />

20 yrs 100 yrs 500 yrs<br />

Carbon dioxide CO 2<br />

1 1 1<br />

Methane CH 4<br />

12.0 62 23 7


GHG Calculation Methodology<br />

• First calculate instantaneous rate of CO 2 and<br />

CH 4 emissions<br />

– Must accurately determine split, γ, , between CO and<br />

unburned fuel in emissions<br />

– Existing efficiency model does not provide this<br />

information<br />

– Major part of ongoing work is to develop better<br />

model for this split, γ<br />

– However, data suggest CO is much less important<br />

and γ =0.1 is a reasonable estimate for now


GHG Calculation Methodology<br />

• Calculation of instantaneous GHG emission<br />

1. Given fuel composition and operational parameters<br />

(flare diameter, exit velocity, wind speed), use<br />

parametric model to calculate efficiency (η)(<br />

2. Use fuel composition and modeled CO/fuel split<br />

parameter (γ)(<br />

) to find mass emission rate of CH 4 and<br />

CO<br />

3. Use IPCC global warming potential values to<br />

calculate instantaneous GHG emission<br />

m& equiv<br />

= GWP ⋅m&<br />

+ m&<br />

GHG<br />

CH<br />

4 CH4<br />

CO2


GHG Calculation Methodology<br />

• Must convert instantaneous GHG emission<br />

calculated at one wind speed value to<br />

meaningful “average” value<br />

• Concept of “Yearly Averaged Efficiency” and<br />

“Yearly Averaged GHG Equivalent Emission”<br />

– Possible to develop using parametric data set and<br />

efficiency model


Yearly Averaged Efficiency<br />

• Statistical weighted average of efficiency taking<br />

into account widely varying wind conditions<br />

• Provides convenient and meaningful measure of<br />

flare efficiency<br />

where<br />

η =<br />

∞<br />

∫<br />

0<br />

P( U ) η(<br />

U ) dU<br />

∞<br />

P(U ∞ ) = probability distribution<br />

function of wind speed<br />

U ∞ = wind speed<br />

η(U ∞ ) = efficiency of flare as<br />

function of wind speed<br />

∞<br />


Yearly Averaged Efficiency<br />

Relative Frequency<br />

0.30<br />

0.25<br />

0.20<br />

0.15<br />

0.10<br />

0.05<br />

Environment Canada<br />

Hourly Averaged Wind Speed Data<br />

for Edmonton International Airport<br />

(1984-1988)<br />

(1-η)(LHV mass ) 3 (MJ/kg) 3<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

12.1 mm ≤ do ≤ 49.8 mm<br />

Natural <strong>Gas</strong> + CO 2 or N 2<br />

Y = 146.5 e (0.1745 X)<br />

0.00<br />

E:\IR-YEG84-88HAVG.GRF<br />

0<br />

LHVmassCorr-NG-Qorf-2-Dia-UgV13D12.GRF<br />

0 2 4 6 8 10 12 14 16 18 20<br />

Hourly Averaged Wind Speed (m/s)<br />

0 5 10 15 20 25 30 35<br />

U ∞ / [(gV j ) 1/3 (d o 1/2 )] (m -1/6 )


Sample GHG Prediction<br />

Calculations


Scenario #1: Mean Solution <strong>Gas</strong> Flare<br />

• Operating Parameters:<br />

– Q = 246,900 m 3 /yr<br />

– D = 4 inch<br />

– Flare <strong>Gas</strong> = 95 % Methane, 5 % CO 2<br />

– LHV = 32.2 MJ/m 3<br />

– Flare location: Edmonton (Airport weather data)<br />

• Yearly Averaged Efficiency: 99.4 %<br />

• Annual CO 2 equivalent GHG emission: 477 tonnes


Scenario #2: “Low BTU” Solution<br />

• Operating Parameters:<br />

<strong>Gas</strong> Flare<br />

– Q = 246,900 m 3 /yr<br />

– D = 4 inch<br />

– <strong>Gas</strong> = 50 % Methane, 50 % CO 2<br />

– LHV = 16.9 MJ/m 3<br />

– Flare location: Edmonton (Airport weather data)<br />

• Yearly Averaged Efficiency: 78.9 %<br />

• Annual CO 2 equivalent GHG emission: 778 tonnes


Scenario #3: Variable Composition<br />

• Mean Volume<br />

Solution <strong>Gas</strong><br />

Flare<br />

Q = 246,900 m 3 /yr<br />

D = 4 inch<br />

<strong>Gas</strong> = CH 4 / CO 2<br />

Edmonton Airport<br />

weather data<br />

Yearly Averaged Efficiency (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

246,900 m 3 /yr<br />

4" Diameter Flare<br />

YEG Wind Data<br />

1200<br />

1000<br />

800<br />

600<br />

CO 2 Equivalent GHG <strong>Emissions</strong> (tonnes)<br />

40<br />

FlareGHGCalc-FuelComp.grf<br />

400<br />

0.4 0.5 0.6 0.7 0.8 0.9 1<br />

CH 4 Fraction in Fuel


Scenario #4: Adding CH 4 to<br />

Mitigate GHG<br />

• Mean Volume<br />

Solution <strong>Gas</strong><br />

Flare<br />

Trends vs.<br />

added CH 4<br />

Starting Point:<br />

Q = 246,900 m 3 /yr<br />

D = 4 inch<br />

LHV = 13.55 MJ/m 3<br />

<strong>Gas</strong> = 0.4 CH 4<br />

, 0.6 CO 2<br />

Yearly Averaged Efficiency (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

Adding CH4 to<br />

raw flare gas<br />

4" Diameter Flare<br />

YEG Wind Data<br />

FlareGHGCalc-AddFuel.grf<br />

0 50000 100000 150000 200000 250000<br />

Added CH 4 (m 3 /year)<br />

1150<br />

1100<br />

1050<br />

1000<br />

950<br />

900<br />

850<br />

CO 2 Equivalent GHG <strong>Emissions</strong> (tonnes)


Scenario #4: Adding CH 4 to<br />

Mitigate GHG<br />

• Mean Volume<br />

Solution <strong>Gas</strong><br />

Flare<br />

Trends vs.<br />

Heating Value of<br />

Flare <strong>Gas</strong><br />

Starting Point:<br />

Q = 246,900 m 3 /yr<br />

D = 4 inch<br />

LHV = 13.55 MJ/m 3<br />

<strong>Gas</strong> = 0.4 CH 4<br />

, 0.6 CO 2<br />

Yearly Averaged Efficiency (%)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

Adding CH 4 to<br />

raw flare gas<br />

4" Diameter Flare<br />

YEG Wind Data<br />

FlareGHGCalc-AddFuel-LHV.grf<br />

12 16 20 24<br />

Lower Heating Value of Flare <strong>Gas</strong> (MJ/m 3 )<br />

1150<br />

1100<br />

1050<br />

1000<br />

950<br />

900<br />

850<br />

CO 2 Equivalent GHG <strong>Emissions</strong> (tonnes)


Conclusions<br />

• It is now possible to define and estimate a<br />

yearly averaged efficiency for a solution gas<br />

flare<br />

– Combines statistical wind speed data with parametric<br />

efficiency model<br />

– Provides a meaningful and rigorous way of assessing<br />

flare performance<br />

– Demonstrates utility of controlled parametric<br />

experiments and modelling


Conclusions<br />

• Outlined preliminary approach to calculate yearly<br />

averaged greenhouse gas equivalent emissions<br />

– Requires more work to accurately segregate CO / CH 4<br />

before being ready for widespread use<br />

– Very useful method for predicting CO 2 equivalent<br />

emissions<br />

– Will permit engineering calculation of “what-if”<br />

scenarios for GHG management and mitigation


Funding Partners

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!