08.11.2014 Views

Design for Service Life, Bridge Birth Certificate & Concrete ...

Design for Service Life, Bridge Birth Certificate & Concrete ...

Design for Service Life, Bridge Birth Certificate & Concrete ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Design</strong> <strong>for</strong> <strong>Service</strong> <strong>Life</strong>,<br />

<strong>Bridge</strong> <strong>Birth</strong> <strong>Certificate</strong> &<br />

<strong>Concrete</strong> Structures<br />

Management Concepts<br />

Presented by: Mike Bartholomew, PE<br />

CH2M HILL<br />

AASHTO <strong>Bridge</strong> Sub-Committee Meeting<br />

T-9 – Technical Committee <strong>for</strong> <strong>Bridge</strong><br />

Preservation<br />

July 6, 2009<br />

New Orleans, LA<br />

1


Discussion Topics<br />

<strong>Service</strong> <strong>Life</strong> <strong>Design</strong><br />

– Work Being Done in Europe<br />

– Current US Practice<br />

– Exposure Conditions<br />

– Deterioration Mechanisms / Protection Systems<br />

– Mathematical Modeling<br />

– Limit States / <strong>Design</strong> Process<br />

<strong>Bridge</strong> <strong>Birth</strong> <strong>Certificate</strong><br />

– Purpose<br />

– Documentation Examples & Templates<br />

– Integration with Inventory Management<br />

Systems<br />

2


fédération<br />

internationale du béton<br />

(The International Federation <strong>for</strong><br />

Structural <strong>Concrete</strong>)<br />

Writing new Model Code to include<br />

<strong>Service</strong> <strong>Life</strong> <strong>Design</strong><br />

Publication of 1 st draft scheduled <strong>for</strong><br />

The Third International fib Congress<br />

– Washington, DC<br />

– May 29 to June 3, 2010<br />

3


fib Commission 5:<br />

Structural <strong>Service</strong> <strong>Life</strong> Aspects<br />

Some key areas of interest<br />

– Probabilistic per<strong>for</strong>mance based service<br />

life design.<br />

– <strong>Service</strong> life management.<br />

– Inspection, assessment and<br />

per<strong>for</strong>mance monitoring.<br />

– Development and validation of<br />

deterioration mechanisms.<br />

4


What do these <strong>Bridge</strong>s have in<br />

common?<br />

5


Answer<br />

Although not similar in:<br />

– Structure Type<br />

– Materials<br />

– Age<br />

– Geographic Locations<br />

They are all:<br />

– Deteriorating with time<br />

6


<strong>Service</strong> <strong>Life</strong> (Durability) <strong>Design</strong><br />

fib Bulletin 34 – Model Code <strong>for</strong> <strong>Service</strong><br />

<strong>Life</strong> <strong>Design</strong> (2006)<br />

Establishes design procedures<br />

– to Resist Deterioration<br />

– from Environmental Actions<br />

In 4 Levels of <strong>Design</strong><br />

– Full Probabilistic<br />

– Partial Factor<br />

– “Deemed to Satisfy”<br />

– Avoidance of Deterioration<br />

7


AASHTO LRFD <strong>Service</strong> <strong>Life</strong><br />

(Durability) <strong>Design</strong> Requirements<br />

2.5.2.1.1 – The contract documents<br />

shall call <strong>for</strong> quality materials and <strong>for</strong><br />

the application of high standards of<br />

fabrication and erection.<br />

Structural steel shall be self<br />

protecting or have long-life life coating<br />

systems or cathodic protection.<br />

8


AASHTO LRFD <strong>Service</strong> <strong>Life</strong><br />

<strong>Design</strong> Requirements<br />

C2.5.2.1.1 – The intent of this Article<br />

is to recognize the significance of<br />

corrosion and deterioration of<br />

structural materials to the long-term<br />

per<strong>for</strong>mance of a bridge.<br />

Durability also mentioned in C5.4.2.1<br />

and 5.12.1.<br />

9


AASHTO LRFD <strong>Service</strong> <strong>Life</strong><br />

<strong>Design</strong> Requirements<br />

Expectations <strong>for</strong> durability exist<br />

All recommendations qualify as<br />

“deemed to satisfy” requirements<br />

Code gives no guidance on how long<br />

a structure should remain in service<br />

Lacks models <strong>for</strong> prediction of<br />

deterioration of structures<br />

No metrics to define if a durable<br />

design is achieved<br />

10


<strong>Service</strong> <strong>Life</strong> <strong>Design</strong> Basics<br />

Establishing <strong>Life</strong> Expectancy<br />

Identifying<br />

– Environmental Exposure Conditions<br />

– Deterioration Mechanisms<br />

– Material Resistance to Deterioration<br />

Establishing Mathematical Modeling<br />

Parameters to Predict Deterioration<br />

Setting Acceptable Damage Limits<br />

11


<strong>Life</strong> Expectancy<br />

AASHTO LRFD <strong>Bridge</strong> <strong>Design</strong><br />

Specifications – Section 1.2<br />

– <strong>Design</strong> <strong>Life</strong> – Period of time on which<br />

the statistical derivation of transient<br />

loads is based – 75 years <strong>for</strong> these<br />

Specifications.<br />

– <strong>Service</strong> <strong>Life</strong> – The period of time that<br />

the bridge is expected to be in<br />

operation.<br />

12


What’s s a Reasonable <strong>Service</strong> <strong>Life</strong>?<br />

50, 75, 100, 150 years, … more?<br />

Expected <strong>Service</strong> <strong>Life</strong> is based on<br />

– Owner’s s desires and expectations<br />

Actual <strong>Service</strong> <strong>Life</strong> will depend on<br />

– Exposure conditions of structure<br />

– Quality of materials, design and<br />

construction<br />

– Level of maintenance per<strong>for</strong>med<br />

13


Indicative Values <strong>for</strong><br />

<strong>Design</strong> <strong>Service</strong> <strong>Life</strong> – fib Bulletin 34<br />

<strong>Design</strong> <strong>Service</strong><br />

<strong>Life</strong>, yrs<br />

Examples<br />

10 Temporary Structures<br />

(Structures or parts of structures that can be dismantled with a<br />

view to being re-used are not to be considered temporary)<br />

10-25<br />

Replaceable structure parts, e.g.,<br />

gantry girders, bearings<br />

15-30<br />

Agricultural and similar structures<br />

50 Buildings and other common<br />

structures<br />

100 Monumental buildings, bridges, and<br />

other civil engineering structures<br />

14


<strong>Service</strong> <strong>Life</strong> <strong>Design</strong>ed Structures<br />

Great Belt <strong>Bridge</strong>, Denmark (100<br />

yrs)<br />

15


<strong>Service</strong> <strong>Life</strong> <strong>Design</strong>ed Structures<br />

Confederation <strong>Bridge</strong>, Canada (100<br />

yrs)<br />

16


<strong>Service</strong> <strong>Life</strong> <strong>Design</strong>ed Structures<br />

San Francisco – Oakland Bay <strong>Bridge</strong><br />

(150 yrs)<br />

17


What About These Structures?<br />

Representing the majority of the<br />

600,000+ <strong>Bridge</strong>s in the US<br />

18


Exposure Conditions<br />

19


Site Exposure Conditions<br />

Aggressivity of Environment<br />

– Sea water<br />

– De-icing agents<br />

– Chemical attack<br />

Temperature / Humidity<br />

– Freeze / thaw cycles<br />

– Wet / Dry cycles<br />

– Tropical (every +10º C doubles rate of<br />

corrosion)<br />

20


Member Exposure Conditions<br />

Marine<br />

– Submerged, tidal, splash, atmospheric<br />

zones<br />

Geographic Orientation<br />

– N-S-E-W, seaward, landward<br />

Surface Orientation<br />

– Ponding, , condensation, protection from<br />

wetting, corners<br />

21


Exposure Classes –<br />

European Standard EN-206<br />

206-1<br />

Class<br />

X0<br />

XC1-XC4<br />

XC4<br />

XD1-XD3<br />

XD3<br />

XS1-XS3<br />

XS3<br />

XF1-XF4<br />

XF4<br />

XA1-XA3<br />

XA3<br />

Description<br />

No Risk of Corrosion or Attack<br />

Corrosion Induced by Carbonation<br />

Corrosion induced by chlorides other<br />

than from sea water<br />

Corrosion induced by chlorides from<br />

sea water<br />

Freeze/thaw attack with or without de-<br />

icing agents<br />

Chemical attack<br />

22


Deterioration<br />

Nothing lasts <strong>for</strong>ever<br />

Every material deteriorates at a<br />

unique rate<br />

Deterioration rate is dependent on<br />

exposure conditions<br />

23


Deterioration Mechanisms<br />

Rein<strong>for</strong>ced <strong>Concrete</strong><br />

– Chloride Induced Corrosion<br />

(Seawater, de-icing salts)<br />

– Carbonation Induced Corrosion<br />

(Normal CO 2 from atmosphere)<br />

24


Deterioration Mechanisms<br />

Structural Steel<br />

– Corrosion after Breakdown of Protective<br />

Coating Systems<br />

25


Protection Systems<br />

Material’s s Own Ability to Resist<br />

Deterioration – <strong>Concrete</strong> Quality<br />

(Permeability) and Cover<br />

Protective Coatings<br />

Membranes & Overlays<br />

26


Deterioration Models<br />

27


Chloride Induced Corrosion Models<br />

Fick’s 2 nd Law Models Time to Initiate Corrosion in<br />

Uncracked <strong>Concrete</strong><br />

C crit Cx ( covt , ) C o ( C s , Δx − C o )<br />

⎛ ⎛ cov − Δx ⎞⎞<br />

+<br />

⋅⎜<br />

1 − erf⎜<br />

⎟⎟<br />

⎝ ⎝ 2⋅<br />

D app , C ⋅t<br />

⎠⎠<br />

C(x,t)<br />

erf<br />

C crit<br />

C o<br />

C s,Δx<br />

cov<br />

D app,C<br />

Chloride concentration at depth & time<br />

Mathematical error function<br />

Critical chloride content (to initiate corrosion)<br />

Initial chloride content of the concrete<br />

Chloride concentration at surface or depth Δx<br />

Depth of concrete cover<br />

Apparent coefficient of chloride diffusion in<br />

concrete (permeability)<br />

28


Deterioration Models / Limit States<br />

29


Limit States – Rein<strong>for</strong>ced <strong>Concrete</strong><br />

1 - Depassivation – No damage to<br />

rein<strong>for</strong>cing / end of initiation phase,<br />

corrosion begins<br />

2 - Cracking – Initial expansion of<br />

corrosion by-products<br />

3 - Spalling – Corrosion by-products cause<br />

loss of concrete cover and bond to<br />

rein<strong>for</strong>cing steel<br />

4 - Collapse – Loss of rein<strong>for</strong>cing steel<br />

cross section from corrosion<br />

30


Limit States<br />

Current practice <strong>for</strong> new structures is<br />

Depassivation phase<br />

fib Commission 5 established task<br />

groups on June 18-19, 19, 2009 in<br />

London to better define:<br />

– Critical Chloride Content to cause<br />

rein<strong>for</strong>cing steel depassivation<br />

– Measurable limits <strong>for</strong> cracking, spalling,<br />

and loss of section<br />

31


Structural vs. Durability Issues<br />

<strong>Design</strong><br />

<strong>Design</strong> Work Item<br />

Structural Issues<br />

Durability Issues<br />

Identify Owner’s<br />

Requirements & Desires<br />

Identify Externally Applied<br />

Actions<br />

Select Materials<br />

Determine Dimensions<br />

Summarize Results<br />

Functionality, Capacity (#<br />

lanes), Appearance<br />

Loads (Self weight, Live<br />

Loads, Wind, Thermal,<br />

Seismic, etc.) and Load<br />

Factors<br />

<strong>Concrete</strong> Strength, Steel Yield<br />

& Ductility and Resistance<br />

Factors<br />

Spans, Component cross<br />

sections<br />

Construction Plans &<br />

Specifications, Engineer’s<br />

Cost Estimate, Calculation<br />

Books<br />

Target <strong>Service</strong> <strong>Life</strong><br />

Environmental actions<br />

(chloride attack, carbonation,<br />

freeze-thaw, chemical attack,<br />

etc.)<br />

Chloride diffusion coefficient<br />

in concrete, rein<strong>for</strong>cing steel<br />

type & coating (plain, epoxy<br />

coated, stainless)<br />

Cover dimensions<br />

Durability Report (initiate<br />

<strong>Birth</strong> <strong>Certificate</strong>),<br />

Construction Specifications<br />

(new Diffusion Coefficient<br />

testing), Engineer’s s Cost<br />

Estimate<br />

32


What is Needed to Implement a<br />

<strong>Service</strong> <strong>Life</strong> <strong>Design</strong> Process?<br />

Further Development of<br />

– Deterioration Models (especially <strong>for</strong><br />

Propagation phase)<br />

– Limit States <strong>for</strong> Acceptable Damage (including<br />

critical chloride content)<br />

Creating <strong>Design</strong> Examples / Workshops<br />

Transfer <strong>Concrete</strong> <strong>Service</strong> <strong>Life</strong> <strong>Design</strong><br />

Process to Steel and Other Materials<br />

Get the Attention of FHWA & AASHTO<br />

State <strong>Bridge</strong> Engineers<br />

33


<strong>Birth</strong> <strong>Certificate</strong><br />

fib New Model Code chapter 2, will<br />

define a <strong>Birth</strong> <strong>Certificate</strong>.<br />

A document, report or technical file (depending on the size and<br />

complexity of the structure concerned) containing engineering<br />

in<strong>for</strong>mation <strong>for</strong>mally defining the <strong>for</strong>m and the condition of the structure<br />

after construction. The document / report should provide specific details<br />

on parameters important to the durability and service life of the structure<br />

concerned (e.g. cover to rein<strong>for</strong>cement, concrete permeability,<br />

environmental conditions, quality of workmanship achieved etc) and the<br />

basis upon which future knowledge of through-life per<strong>for</strong>mance should<br />

be recorded. This framework should provide a means of comparing<br />

actual behaviour / per<strong>for</strong>mance with that anticipated at the time of design<br />

of the structure. The document / report should facilitate ongoing<br />

(through-life) evaluation of the service life which is likely to be achieved<br />

by the structure.<br />

34


<strong>Birth</strong> <strong>Certificate</strong> Purpose<br />

Contains engineering in<strong>for</strong>mation<br />

defining <strong>for</strong>m and condition of<br />

structure at end of construction<br />

Documents specific parameters<br />

affecting durability of structure<br />

35


Structural vs. Durability Issues<br />

Construction<br />

Construction Work Item<br />

Structural Issues<br />

Durability Issues<br />

Per<strong>for</strong>m, Monitor & Inspect<br />

Work<br />

Track Variances<br />

Summarize Results<br />

Verify dimensions, test &<br />

document material strength<br />

properties<br />

Accept / Accept with cost<br />

adjustment <strong>for</strong> deficiencies /<br />

Reject<br />

As-Built Plans, Load Rating<br />

Verify and map cover, test &<br />

document actual material<br />

durability properties (chloride<br />

diffusion coefficient, etc.)<br />

Accept / Accept with cost<br />

adjustment <strong>for</strong> deficiencies /<br />

Reject<br />

Durability Rating, update<br />

<strong>Birth</strong> <strong>Certificate</strong><br />

36


<strong>Birth</strong> <strong>Certificate</strong> Purpose<br />

(continued)<br />

Compares actual behavior /<br />

per<strong>for</strong>mance with that anticipated<br />

during design<br />

Facilitates on-going (through-life)<br />

evaluation of remaining service life<br />

37


Structural vs. Durability Issues<br />

In-<strong>Service</strong> Use<br />

Work Item<br />

Structural Issues<br />

Durability Issues<br />

Routine Visual Inspections<br />

(Biennial – required by law)<br />

In-Depth Monitoring (every 7-7<br />

10 years)<br />

Assessment<br />

Rehabilitation/Intervention<br />

Dismantling<br />

To detect obvious defects<br />

with minimal testing<br />

Reactive – Identify problem<br />

areas as they occur (<strong>Concrete</strong><br />

Cracks & Spalls, Rein<strong>for</strong>cing<br />

Corrosion, Joint and Bearing<br />

failure)<br />

Change in Use/Loading or<br />

After Significant Event<br />

(Earthquake, Hurricane,<br />

Flood, Fire, Explosion,<br />

Truck/Ship Impact)<br />

Replace/Repair/Strengthen<br />

damaged structural<br />

components<br />

Demolish & Remove Waste<br />

Same as structural<br />

Proactive – Testing to monitor<br />

in-service conditions (chloride<br />

diffusion coefficient, chloride<br />

profiles, chloride surface<br />

concentration)<br />

Assess Remaining <strong>Service</strong> <strong>Life</strong><br />

of Components<br />

Per<strong>for</strong>m Corrosion Surveys -<br />

Add Corrosion Protection<br />

Systems (Galvanic, Cathodic<br />

Protection, or Electrochemical<br />

Systems)<br />

Recycle & Re-Use Materials<br />

38


<strong>Birth</strong> <strong>Certificate</strong> –<br />

Table of Contents<br />

1) Identification of Asset<br />

– Description & Identification of Structure<br />

– General Plan & Typical Section Drawings<br />

– <strong>Design</strong> Parameters / Target <strong>Service</strong> <strong>Life</strong><br />

2) Environmental Exposure<br />

Conditions<br />

3) Deterioration Models<br />

39


<strong>Birth</strong> <strong>Certificate</strong> –<br />

Table of Contents (continued)<br />

4) Summary of Individual Structure<br />

Components<br />

– Mapping of:<br />

Exposure Classes/Severities<br />

Deterioration Models<br />

Mean Material Properties<br />

Mean Cover Dimensions<br />

Expected <strong>Service</strong> <strong>Life</strong> (Target & Remaining)<br />

40


<strong>Birth</strong> <strong>Certificate</strong> –<br />

Table of Contents (continued)<br />

5) Summary of Ancillary<br />

(Replaceable) Components<br />

– Mapping & Documentation (similar to<br />

Structural Components) <strong>for</strong>:<br />

Bearings<br />

Expansion Joints<br />

Protective Membrane Systems<br />

41


<strong>Birth</strong> <strong>Certificate</strong> –<br />

Table of Contents (continued)<br />

6) In-<strong>Service</strong> Inspection<br />

– Routine & Special Maintenance Schedule<br />

– Schedule of Inspections<br />

Routine Visual (Biennial)<br />

In-Depth Monitoring and Sampling (7-10<br />

years)<br />

– Special Test Method Requirements<br />

7) Dismantling Plan<br />

42


Example <strong>Birth</strong> <strong>Certificate</strong><br />

43


<strong>Birth</strong> <strong>Certificate</strong> – Next Steps<br />

Determine Guidelines <strong>for</strong>:<br />

– Type and number of tests of material<br />

durability properties<br />

– Type and extents of as constructed<br />

concrete cover measurements<br />

Develop templates <strong>for</strong> additional<br />

Deterioration Models <strong>for</strong> the Example<br />

<strong>Birth</strong> <strong>Certificate</strong> (Carbonation)<br />

49


<strong>Birth</strong> <strong>Certificate</strong> – Next Steps<br />

Develop criteria <strong>for</strong> deterioration<br />

models <strong>for</strong> Ancillary Components<br />

(Joints & Bearings)<br />

Develop a suggested <strong>for</strong>mat <strong>for</strong><br />

Inspection & Maintenance Schedule<br />

(similar to automobile maintenance<br />

schedules)<br />

Develop a template <strong>for</strong> a Dismantling<br />

Plan<br />

50


Concluding Remarks<br />

<strong>Service</strong> <strong>Life</strong> <strong>Design</strong> & Inventory<br />

Management<br />

– Addresses the whole life of the structure<br />

– Requires a new proactive mindset <strong>for</strong> the<br />

industry<br />

– Has huge potential <strong>for</strong> predicting the future<br />

health, safety, and allocation of funding of our<br />

infrastructure<br />

Process in its Infancy<br />

– Better prediction tools need to be developed<br />

– But, we need to start somewhere<br />

51


Questions?<br />

Thank you<br />

52

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!