12.11.2014 Views

Linear response and Time dependent Hartree-Fock

Linear response and Time dependent Hartree-Fock

Linear response and Time dependent Hartree-Fock

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Linear</strong> <strong>response</strong> <strong>and</strong> <strong>Time</strong> <strong>dependent</strong><br />

<strong>Hartree</strong>-<strong>Fock</strong><br />

November 6, 2008<br />

1 General <strong>Linear</strong> Response Theory<br />

This derivation follows essentially te one found in the book by Pines <strong>and</strong><br />

Nozieéres [1] it is a bit more general because it does not assume translational<br />

invariance. In fact, Pines <strong>and</strong> Nozieres are to some extent misleading.<br />

Assume that our many-body system is subjected to weak, local, time<strong>dependent</strong><br />

field<br />

δH ext (t) = ∑ ∫<br />

δh ext (r i , t) = d 3 rˆρ † (r)δh ext (r, t) (1)<br />

i<br />

Here, ˆρ(r) = ∑ i δ(r − r i ) is the density operator. We will look at monochromatic<br />

external fields, this is best done in frequency space:<br />

∫<br />

h ext (r, ω) = dte −iωt h ext (r, t)<br />

∫<br />

⇒ h ∗ ext(r, ω) = dte −iωt h ext (r, t) = h ext (r, −ω) (2)<br />

since the external field is real. Thus<br />

<strong>and</strong>, therefore we have<br />

δH ext (t) =<br />

∫<br />

h ∗ ext(r, ω) = h ext (r, −ω) (3)<br />

d 3 rˆρ(r) [ h ext (r, ω)e −iωt + h ∗ ext(r, ω)e iωt]<br />

= δH ext (ω)e −iωt + δH ∗ ext(ω)e iωt . (4)<br />

To preserve causailty, we assume that the external field has been turned on<br />

very slowly in the distant past, i.e. instead of the above we should have<br />

δH ext (t) = [ δH ext (ω)e −iωt + δH ∗ ext(ω)e iωt] e ηt (5)<br />

1


with an infinitesimal parameter η.<br />

We now want to calculate the induced density fluctuation δρ(r, t) due<br />

to this external field. A priori, the infinitesimal perturbation causes an infinitesimal<br />

change in the ground state wave function:<br />

The change in density is then, to first order,<br />

|Ψ 0 〉 → |Ψ(t)〉 = |Ψ 0 〉 + |δΨ(t)〉 (6)<br />

δρ(t) = 〈Ψ(t)| ˆρ(r) |Ψ(t)〉 − 〈Ψ 0 | ˆρ(r) |Ψ 0 〉<br />

≈ 〈Ψ 0 | ˆρ(r) |δΨ(t)〉 + 〈δΨ(t)| ˆρ(r) |Ψ 0 〉 . (7)<br />

This δρ(t) is called the transition density because it is the transition matrix<br />

element of the density operator between the ground state |Ψ 0 〉 <strong>and</strong> the perturbation<br />

|δΨ(t)〉. The time dependence of the perturbation causes the same<br />

time dependence of the density fluctuation,<br />

δρ(r; t) ∼ δρ(r)e −iωt e ηt . (8)<br />

(This is to be taken with a little caution, of course the transition density also<br />

must be real.)<br />

The time <strong>dependent</strong> part of the wave function can be calculated by peerturbation<br />

theory.<br />

Ansatz for the solution<br />

i¯h ∂ ∂t |Ψ(t)〉 = (H + δH ext(t)) |Ψ(t)〉 . (9)<br />

|Ψ(t)〉 = ∑ n<br />

a n (t)e −iωnt |n〉 (10)<br />

where {E n , |n〉} ≡ {¯hω n , |n〉} is the energy/eigenfunction pair of the unperturbed<br />

Hamiltonian. The initial condition is a n (−∞) = δ n,0 . Inserting the<br />

above in the Schrödinger equation gives<br />

∑<br />

(i¯hȧ n (t) + E n a n (t)) e −iωnt |n〉 = ∑ (E n + δH ext (t))a n (t)e −iωnt |n〉<br />

n<br />

n<br />

∑<br />

i¯hȧ n (t) |n〉 = ∑ δH ext (t)a n (t)e −iωnt |n〉 (11)<br />

n<br />

n<br />

Now only a 0 (t) = 1 is 0 th order in δH ext (t), all other a n (t) are first order. We<br />

therefore need to keep only the first term on the right h<strong>and</strong> side. Projecting<br />

the equation on a state |n〉 then gives<br />

i¯hȧ n (t) = 〈n| δH ext (t) |0〉 e i(ωn−ω 0)t ≡ 〈n| δH ext (t) |0〉 e iω n0t<br />

(12)<br />

2


with ω n0 = ω n − ω 0 .<br />

We can now insert the perturbing Hamiltonian<br />

∫<br />

〈n| δH ext (t) |0〉 = d 3 r ′ 〈n| ˆρ(r ′ ) |0〉 [ h ext (r ′ )e −iωt + h ∗ ext(r ′ )e iωt] e ηt (13)<br />

we can write<br />

∫<br />

i¯hȧ n (t) = d 3 r ′ 〈n| ˆρ(r ′ ) |0〉 [ h ext (r ′ )e i(ωn0−ω)t+ηt + h ∗ ext(r ′ )e ] i(ω n0+ω)t+ηt<br />

e ηt<br />

or<br />

a n (t) =<br />

−<br />

(14)<br />

∫<br />

d 3 〈n| ˆρ(r) |0〉<br />

rh ext (r, ω)<br />

¯hω − ¯hω n0 + iη ei(ω n0−ω)t+ηt<br />

∫<br />

d 3 rh ∗ 〈n| ˆρ(r) |0〉<br />

ext(r, ω)<br />

¯hω n0 + ¯hω − iη ei(ω n0+ω)t+ηt . (15)<br />

(We can redefine η ↔ ¯hη because η is infinitesimal.)<br />

Inserting the expansion of |δΨ(t)〉 into the transition density gives generally<br />

δρ(r, t) = ∑ n>0<br />

a n (t) 〈0| ˆρ(r) |n〉 e −iω n0t + c.c.<br />

=<br />

−<br />

=<br />

∫<br />

∫<br />

∫<br />

d 3 r ′ h ext (r ′ ) ∑ n>0<br />

d 3 r ′ h ∗ ext(r ′ ) ∑ n>0<br />

〈0| ˆρ(r) |n〉 〈n| ˆρ(r ′ ) |0〉<br />

e −iωt+ηt<br />

¯hω − ¯hω n0 + iη<br />

〈0| ˆρ(r) |n〉 〈n| ˆρ(r ′ ) |0〉<br />

e iωt+ηt + c.c.<br />

¯hω + ¯hω n0 − iη<br />

d 3 r ′ h ext (r ′ ) ∑ n>0<br />

〈0| ˆρ(r) |n〉 〈n| ˆρ(r ′ ) |0〉 × (16)<br />

[<br />

]<br />

1<br />

×<br />

¯hω − ¯hω n0 + iη − 1<br />

e −iωt+ηt<br />

¯hω + ¯hω n0 + iη<br />

+c.c. (17)<br />

We can then define the coordinate space representation of the density-density<br />

reponse function as<br />

χ(r, r ′ ; ω) = ∑ [ 〈0| ˆρ(r) |n〉 〈n| ˆρ(r ′ ) |0〉<br />

− 〈0| ˆρ(r) |n〉 〈n| ]<br />

ˆρ(r′ ) |0〉<br />

. (18)<br />

n>0<br />

¯hω − ¯hω n0 + iη ¯hω + ¯hω n0 + iη<br />

We have already seen the definition of the dynamic structure function.<br />

We can immediately read off the relationship, noting that<br />

lim<br />

η→0<br />

1<br />

¯hω − ¯hω n0 + iη = πδ(¯hω − ¯hω n0) (19)<br />

3


<strong>and</strong> therefore, for ω >=<br />

Imχ(r, r ′ ; ω) = π ∑ n>0<br />

〈0| ˆρ(r) |n〉 〈n| ˆρ(r ′ ) |0〉 δ(¯hω − ¯hω n0 ) (20)<br />

(The definition of common factors <strong>and</strong> signs differs in different textbooks !)<br />

In scattering experiments, one observes the momentum transfer, so the<br />

∫<br />

χ(q, ω) = d 3 rd 3 r ′ e iq·(r−r′) χ(r, r ′ ; ω)<br />

= ∑ [ |〈0| ˆρq |n〉| 2<br />

n>0<br />

¯hω − ¯hω n0 + iη − |〈0| ˆρ q |n〉| 2 ]<br />

. (21)<br />

¯hω + ¯hω n0 + iη<br />

2 Excited state wave function <strong>and</strong> the action<br />

integral<br />

It comes now to the point where we must some definite model for the excited<br />

states of a physical system. This can not be done in general; we must make<br />

some approximations. With all the reservations one can have about the<br />

<strong>Hartree</strong>-<strong>Fock</strong> approximation, we start with that one.<br />

We approximate the wave function of excited states by<br />

|ψ(t)〉 = 1<br />

∑<br />

N (t) e−iE HF t/¯h e 1 2 ph c ph(t)a † pa h |φHF 〉 (22)<br />

where |φ HF 〉 is a <strong>Hartree</strong>-<strong>Fock</strong> ground state. E HF the <strong>Hartree</strong>-<strong>Fock</strong> energy<br />

expectation value, <strong>and</strong> the c ph (t) “particle–hole amplitudes”.<br />

N 2 (t) = 〈φ HF | e 1 2<br />

∑<br />

ph c∗ ph (t)a† h a p<br />

e 1 2<br />

∑<br />

ph c ph(t)a † pa h |φHF 〉 (23)<br />

is the normalization integral. Note that states that are labeled with<br />

h, h i , h ′ , . . . are understood to be occupied (“hole”) states (i.e. states that are<br />

present in the Slater determinant φ HF <strong>and</strong> states labeled with p, p i , p ′ , . . . are<br />

unoccupied “particle” states. As above, assume that the system is described<br />

by a Hamiltonian that is written in coordinate space as<br />

H = H 1 + V (24)<br />

H 1 = ∑ h(r i ) = ∑ ]<br />

[− ¯h2<br />

i<br />

i<br />

2m ∇2 i + U ext (r i )<br />

(25)<br />

V = ∑ v(r i , r j ) (26)<br />

i


or, in second quantized form<br />

H 1 = ∑ αβ<br />

〈α| h ext |β〉 a † αa β (27)<br />

V = 1 ∑<br />

〈αβ| v |γδ〉 a †<br />

2<br />

αa † β a δ a γ . (28)<br />

αβγδ<br />

We furthermore subject the system to a weak, scalar external field<br />

δH ext (t) = ∑ i<br />

δh ext (r i ; t) (29)<br />

or, in second quantized form,<br />

δH 1 (t) = ∑ αβ<br />

〈α| δh(t) |β〉 a † αa β . (30)<br />

Similar to the determination of the single-particle wave functions of the<br />

<strong>Hartree</strong>-<strong>Fock</strong> theory by a variational principle, the “particle-hole amplitudes”<br />

are determined by the “Kerman-Koonin” stationarity principle<br />

∫ t1<br />

δS = δ dtL(t) (31)<br />

t 0<br />

L(t) = 〈ψ(t)| H + δH ext − i¯h ∂ |ψ(t)〉 . (32)<br />

∂t<br />

We want to derive linear equations of motion, hence we must keep all<br />

second order terms in the Lagrangian. The driving quantity is the external<br />

perturbing field δH 1 (t) which is, by assumption, of first order. <strong>Linear</strong> equations<br />

of motion will lead to c ph (t) that are of the same order. Thus, to get<br />

linear equations of motion, we must keep the linear terms in c ph (t) with the<br />

perturbing field, <strong>and</strong> the quadratic terms in all others.<br />

Thus:<br />

〈ψ(t)| δH ext |ψ(t)〉<br />

≈ 1 ∑ [<br />

c<br />

∗<br />

2 ph 〈φ HF | a † h a pδH ext (t) |φ HF 〉 + c ph 〈φ HF | δH ext (t)a † pa h |φ HF 〉 ]<br />

= 1 2<br />

= 1 2<br />

= 1 2<br />

ph<br />

∑<br />

phαβ<br />

∑<br />

phαβ<br />

∑<br />

ph<br />

〈α| δh ext (t) |β〉 [ c ∗ ph 〈φ HF | a † h a pa † αa β |φ HF 〉 + c ph 〈φ HF | a † αa β a † pa h |φ HF 〉 ]<br />

〈α| δh ext (t) |β〉 [ c ∗ phδ α,p δ β,h + c ph δ β,p δ α,h<br />

]<br />

[<br />

c<br />

∗<br />

ph 〈p| δh ext (t) |h〉 + c ph 〈h| δh ext (t) |p〉 ] . (33)<br />

5


In the time derivative term we must be a bit more careful <strong>and</strong> keep the<br />

normalization N (t).<br />

〈ψ(t)| i¯h ∂ ∂t |ψ(t)〉 = E HF + i¯h 2 〈ψ 0(t)| ∑ ph<br />

= E HF + i¯h 4<br />

∑<br />

ph<br />

ċ ph (t)a † pa h |ψ(t)〉 − i¯h 2<br />

˙ N (t)<br />

N (t)<br />

〈ψ(t)| ċ ph (t)a † pa h − ċ ∗ ph(t)a † h a p |ψ(t)〉 (34) .<br />

This formula is still exact, we now exp<strong>and</strong> to second order. We can immediately<br />

leave out all terms that can be written as a time-derivative. Also, first<br />

order terms are zero because 〈φ HF | a † pa h |φ HF 〉 = 0. Hence<br />

〈ψ(t)| i¯h ∂ ∂t |ψ(t)〉<br />

= E HF + i¯h 4<br />

= E HF + i¯h 4<br />

∑<br />

〈φ HF | c ∗ p ′ h ′(t)ċ ph(t)a † h ′a p ′a† pa h − ċ ∗ ph(t)c p ′ h ′(t)a† h a pa † p ′a h |φ HF〉<br />

′<br />

php ′ h ′<br />

∑ [<br />

c<br />

∗<br />

ph (t)ċ ph (t) − ċ ∗ ph(t)c ph (t) ] . (35)<br />

ph<br />

It should also be noted that this term occurs under the time integral in the<br />

action (31), hence we can integrate by parts. In other words, the two term<br />

appearing above are the same.<br />

Finally we must exp<strong>and</strong> 〈ψ(t)| H − E HF |ψ(t)〉 to second order in the<br />

c ph (t). The E HF comes from the time-derivative term, it evidently cancels<br />

the zeroth order term in our expansion. The normalization integral (23) is<br />

to second order<br />

N 2 (t) ≈ 〈φ HF | 1 + 1 ∑<br />

c ph (t)a †<br />

2<br />

pa h + 1 ∑<br />

c ∗<br />

ph<br />

2<br />

ph(t)a † h a p + O(c 2 ph) |φ HF 〉<br />

ph<br />

= 1 + O(c 2 ph) (36)<br />

<strong>and</strong> has therefore no influence.<br />

Now<br />

〈ψ(t)| H − E HF |ψ(t)〉<br />

= 1 ∑ [<br />

c<br />

∗<br />

2 ph 〈φ HF | a † h a p(H − E HF ) |φ HF 〉 + c ph 〈φ HF | (H − E HF )a † pa h |φ HF 〉 ]<br />

ph<br />

∑<br />

+ 1 c ∗<br />

8<br />

phc ∗ p ′ h 〈φ HF| a † ′ h a pa † h ′a p ′(H − E HF ) |φ HF 〉<br />

pp ′ hh ′<br />

+ 1 ∑<br />

c ph c p<br />

8<br />

′ h ′ 〈φ HF| (H − E HF )a † pa h a † p ′a h |φ HF〉<br />

′<br />

pp ′ hh ′<br />

6


+ 1 ∑<br />

c ∗<br />

4<br />

phc p ′ h ′ 〈φ HF| a † h a p(H − E HF )a † p ′a h |φ HF〉 . (37)<br />

′<br />

pp ′ hh ′<br />

The situation is the same as the usual one in the theory of small oscillations:<br />

The first order terms must be zero in order to obtain a sensible second order<br />

equation. We must therefore require that<br />

〈φ HF | a † h a p(H − E HF ) |φ HF 〉 = 〈φ HF | (H − E HF )a † pa h |φ HF 〉 = 0 . (38)<br />

These conditions are called the “Brillouin conditions”. In the case of a<br />

<strong>Hartree</strong>–<strong>Fock</strong> ground state the condition is identical to the requirement that<br />

the single particle orbitals have been obtained by the <strong>Hartree</strong>-<strong>Fock</strong> equation.<br />

We can now turn to the evaluation of the second-order terms: In the terms<br />

that contain c ∗ phc ∗ p ′ h or c phc ′ p ′ h ′, the matrix element of E HF is taken between<br />

a 2p − 2h state <strong>and</strong> the ground state <strong>and</strong> is zero because of orthogonality<br />

〈φ HF | a † h a pa † h ′a p |φ HF〉 = 0. Moreover, the matrix element of the one-body<br />

′<br />

part of the Hamiltonian is zero:<br />

〈φ HF | a † h a pa † h ′a p ′H 1 |φ HF 〉 = ∑ αβ<br />

〈α| h |β〉 〈φ HF | a † h a pa † h ′a p ′a† αa β |φ HF 〉 = 0 (39)<br />

because, for example α = p <strong>and</strong> β = h <strong>and</strong> then we would have the overlap<br />

between a 1p-1h state <strong>and</strong> the ground state. Therefore, this term has<br />

contributions form the pair potential only:<br />

〈φ HF | a † h a pa † h ′a p ′V |φ HF〉 = 1 2<br />

Likewise, we get<br />

= 1 2<br />

= 1 2<br />

∑<br />

αβγδ<br />

∑<br />

αβγδ<br />

∑<br />

αβγδ<br />

〈αβ| v |γδ〉 〈φ HF | a † h a pa † h ′a p ′a† αa † β a δ a γ |φ HF 〉<br />

〈αβ| v |γδ〉 〈φ HF | a † h a pa † h ′a p ′a† αa † β a δ a γ |φ HF 〉<br />

〈αβ| v |γδ〉 [δ αp δ βp ′ − δ αp ′δ βp ] [δ δh ′δ γh − δ δh δ γh ′]<br />

= 〈pp ′ | v |hh ′ 〉 a<br />

(40)<br />

〈φ HF | V a † pa h a † p ′a h ′ |φ HF〉 = 〈hh ′ | v |pp ′ 〉 a<br />

. (41)<br />

Finally we need to work out the last term in Eq. (37). We have to<br />

distinguish four cases, namely p = p ′ , h = h ′ , p = p ′ , h ≠ h ′ , p ≠ p ′ , h = h ′<br />

<strong>and</strong> p ≠ p ′ , h ≠ h ′ . The case p = p ′ , h = h ′ has already been worked out, we<br />

have obtained<br />

〈φ HF | a † pa h (H − E HF )a † pa h |φ HF 〉 = ɛ p − ɛ h , (42)<br />

7


where the ɛ p , ɛ h are the <strong>Hartree</strong>-<strong>Fock</strong> single particle energies.<br />

I calculate only one of the half-off-diagonal terms, p ≠ p ′ , h = h ′ . In a<br />

uniform system, it is clear that these matrix elements must vanish because the<br />

left state has a different momentum as the right state. In a inhomogeneous<br />

system, calculate<br />

〈φ HF | a † h a pH 1 a † p ′a h |φ HF〉 = ∑ αβ<br />

= ∑ αβ<br />

= ∑ αβ<br />

〈α| h |β〉 〈φ HF | a † h a pa † αa β a † p ′a h |φ HF〉<br />

〈α| h |β〉 〈φ HF | δ αp a † h a β a† p ′a h + a† h a† αa β a p a † p ′a h |φ HF〉<br />

〈α| h |β〉 δ αp δ βp ′ = 〈p| h |p ′ 〉 (43)<br />

because, to get from the second to the third line, we could use that p ≠ p ′ .<br />

The potential term is a little tedious:<br />

〈φ HF | a † h a pV a † p ′a h |φ HF〉 = 1 2<br />

= 1 2<br />

= ∑ βδ<br />

∑<br />

αβγδ<br />

∑<br />

βγδ<br />

〈αβ| v |γδ〉 〈φ HF | a † h a pa † αa † β a δ a γa † p ′a h |φ HF〉<br />

〈pβ| v |γδ〉 〈φ HF | a † h a† β a δ a γa † p ′a h |φ HF〉<br />

〈pβ| v |p ′ δ〉 a<br />

〈φ HF | a † h a† β a δ a h |φ HF〉<br />

= ∑ h ′ 〈ph ′ | v |p ′ h ′ 〉 a<br />

. (44)<br />

The last line (i.e. that we can restrict the sum over the δ states to occupied<br />

states follows because of δ were a particle state it would destroy the ground<br />

state |φ HF 〉.<br />

Thus, the result is<br />

〈φ HF | a † h a pHa † p ′a h |φ HF〉 = 〈p| h |p ′ 〉 + ∑ h ′ 〈ph ′ | v |p ′ h ′ 〉 a<br />

(45)<br />

In the above, we recover the matrix element of the <strong>Hartree</strong>-<strong>Fock</strong> operator.<br />

Thus, if all states are generated by the <strong>Hartree</strong>-<strong>Fock</strong> equation, then these<br />

“half-off-diagonal” term vanish. Since this is a reasonable assumption (how<br />

else would one generate the particle wave functions ?) we can go on <strong>and</strong><br />

assume either p = p ′ , h = h ′ or p ≠ p ′ , h ≠ h ′ .<br />

In the latter case, we can have only contributions from the interaction:<br />

〈φ HF | a † h a pV a † p ′a h ′ |φ HF〉 = 1 2<br />

∑<br />

αβγδ<br />

〈αβ| v |γδ〉 〈φ HF | a † h a pa † αa † β a δ a γa † p ′a h ′ |φ HF〉<br />

8


= 1 ∑<br />

〈pβ| v |γδ〉 〈φ HF | a † h<br />

2<br />

a† β a δ a γa † p ′a h |φ HF〉<br />

′<br />

βγδ<br />

= ∑ 〈pβ| v |p ′ δ〉 a<br />

〈φ HF | a † h a† β a δ a h |φ HF〉<br />

′<br />

βδ<br />

= − 〈ph ′ | v |p ′ h〉 a<br />

= 〈ph ′ | v |hp ′ 〉 a<br />

. (46)<br />

This derivation deviates from the previous one only in the last line: Now we<br />

can not have β = δ because that would imply h = h ′ which contradicts our<br />

assumption.<br />

With these manipulations, we have derived our Lagrangian (32) to second<br />

order:<br />

L(t) = ∑ [<br />

c<br />

∗<br />

ph 〈p| δh(t) |h〉 + c ph 〈h| δh(t) |p〉 ] + i¯h ∑ [<br />

c<br />

∗<br />

ph<br />

2 ph (t)ċ ph (t) − ċ ∗ ph(t)c ph (t) ]<br />

ph<br />

+ 1 ∑ [ ]<br />

c<br />

∗<br />

2 ph c ∗ p ′ h ′ 〈pp′ | v |hh ′ 〉 a<br />

+ c ph c p ′ h ′ 〈hh′ | v |pp ′ 〉 a<br />

pp ′ hh ′<br />

+ ∑<br />

c ∗ phc p ′ h ′ [(ɛ p − ɛ h )δ pp ′δ hh ′ + 〈ph ′ | v |hp ′ 〉 a<br />

] (47)<br />

pp ′ hh ′<br />

3 Equations of Motion<br />

We are now ready to derive the equations of motion. The action integral<br />

(47) has been exp<strong>and</strong>ed to second order in the particle–hole amplitudes c ph ,<br />

c ∗ ph. The linear equations of motion are now obtained from the stationarity<br />

principle<br />

δS [ c ph (t), c ∗ ph(t) ] = 0 . (48)<br />

Recall that the Lagrangian (47) appears under the time integral, we can<br />

therefore integrate the time coordinate by parts. Doing the variation with<br />

respect to c ph <strong>and</strong> c ∗ ph gives two equations:<br />

0 = i¯hċ ph + 〈p| δh ext (t) |h〉<br />

+ ∑ p ′ h ′ [<br />

〈pp ′ | v |hh ′ 〉 c ∗ p ′ h ′ + [(ɛ p − ɛ h )δ pp ′δ hh ′ + 〈ph ′ | v |hp ′ 〉 a<br />

] c p ′ h ′ ]<br />

0 = −i¯hċ ∗ ph + 〈p| δh ext (t) |h〉<br />

+ ∑ p ′ h ′ [<br />

〈pp ′ | v |hh ′ 〉 c p ′ h ′ + [(ɛ p − ɛ h )δ pp ′δ hh ′ + 〈ph ′ | v |hp ′ 〉 a<br />

] c ∗ p ′ h ′ ]<br />

(49)<br />

9


A convenient representation of the resulting equations is a “supermatrix”<br />

form, considering sets of states ph as row/column indices of a “supermatrix”.<br />

H ≡<br />

c(t) ≡<br />

[ ] A B<br />

B † A †<br />

M ≡<br />

[ ] 1 0<br />

0 −1<br />

[ ]<br />

[ ]<br />

c(t)<br />

h(t)<br />

c ∗ , h(t) ≡<br />

(t)<br />

h ∗ (t)<br />

where A <strong>and</strong> B are particle–hole matrices of the form<br />

<strong>and</strong><br />

(50)<br />

(51)<br />

A = (A ph,p ′ h ′) ≡ ((ɛ p − ɛ h ) δ pp ′δ hh ′ + 〈ph ′ | v |hp ′ 〉) , (52)<br />

B = (B ph,p ′ h ′) ≡ (〈pp′ | v |hh ′ 〉) , (53)<br />

c(t) ≡ (c ph (t)) h(t) ≡ (〈p| δh ext (t) |h〉) . (54)<br />

In terms of these quantities, the linearized equations of motion assume the<br />

form<br />

Hc(t) + h(t) = i¯h ∂ Mc(t) . (55)<br />

∂t<br />

It is always convenient to rewrite the equations in terms of frequencies. To<br />

that end, write<br />

δh ext (r; t) = δh ext (r; ω) [ e iωt + e −iωt] e ηt (56)<br />

<strong>and</strong> also split the c ph (t) into components with positive <strong>and</strong> negative frequency:<br />

c(t) = [ xe −iωt + y ∗ e iωt] e ηt (57)<br />

Insert these in the time-<strong>dependent</strong> equation <strong>and</strong> collect the terms with positive<br />

<strong>and</strong> negative frequency gives the final form<br />

[ ] [ ] [ ]<br />

[ ] [ ]<br />

A B x h 1 0 x<br />

B † A † +<br />

y h ∗ = ¯h(ω + iη)<br />

. (58)<br />

0 −1 y<br />

These are the general “time-<strong>dependent</strong> <strong>Hartree</strong>-<strong>Fock</strong>” equations. Solving<br />

these equations is quite common in nuclear <strong>and</strong> atomic physics. A derivation<br />

may be found, for example, in the book by Thouless [2].<br />

4 TDHF for the density-density <strong>response</strong><br />

function<br />

The above equation gives, for the case of zero external field, the eigenfrequencies<br />

of the system. To get a density-density <strong>response</strong>, one must calculate, to<br />

10


first order in the particle-hole amplitudes, the density fluctuation<br />

δρ(r; t) = 〈ψ(t)| ˆρ(r) |ψ(t)〉 − 〈φ HF | ˆρ(r) |φ HF 〉<br />

[<br />

c<br />

∗<br />

ph 〈φ HF | a † h a p ˆρ(r) |φ HF 〉 + c ph 〈φ HF | ˆρ(r)a † h a p |φ HF 〉 ]<br />

= ∑ ph<br />

= ∑ ph<br />

[<br />

c<br />

∗<br />

ph ϕ p (r)ϕ ∗ h(r) + c ph ϕ ∗ p(r)ϕ h (r) ]<br />

= ∑ ph<br />

[<br />

xph ϕ p (r)ϕ ∗ h(r) + y ph ϕ ∗ p(r)ϕ h (r) ] e iωt+ηt + c.c.<br />

where<br />

= [x(r) + y(r)] e −iωt+ηt + [x ∗ (r) + y ∗ (r)] e iωt+ηt (59)<br />

x(r) ≡ ∑ ph<br />

ϕ ∗ h(r)ϕ p (r)x ph <strong>and</strong> y(r) ≡ ∑ ph<br />

ϕ h (r)ϕ ∗ p(r)y ph . (60)<br />

In principle, one can solve the TDHF equation for any external potential,<br />

obtain the x ph <strong>and</strong> y ph , <strong>and</strong> insert these in the density fluctuation. But this<br />

does not lead to the beloved form of the density-density <strong>response</strong> function<br />

that is fancied by the condensed matter community. To get such a form,<br />

one must first omit all exchange terms. Using this simplification, the explicit<br />

forms of A <strong>and</strong> B are<br />

∫<br />

A ph,p ′ h ′ = [e(p) − e(h)]δ pp ′δ hh ′ + d 3 rd 3 r ′ ϕ ∗ p(r)ϕ ∗ h ′(r′ )V (r, r ′ )ϕ h (r)ϕ p ′(r ′ )<br />

∫<br />

B ph,p ′ h ′ = d 3 rd 3 r ′ ϕ ∗ p(r)ϕ ∗ p ′(r′ )V (r, r ′ )ϕ h (r)ϕ h ′(r ′ ) (61)<br />

Then we can write Eq. (58)<br />

x ph +<br />

y ph +<br />

∫<br />

〈p| δh ext |h〉<br />

ɛ p − ɛ h − ¯hω − iη + ∫<br />

〈h| δh ext |p〉<br />

ɛ p − ɛ h + ¯hω + iη +<br />

d 3 rd 3 r ′ ϕ ∗ p(r)ϕ h (r)<br />

ɛ p − ɛ h − ¯hω − iη V (r, r′ ) [x(r ′ ) + y(r ′ )] = 0<br />

d 3 rd 3 r ′ ϕ p (r)ϕ ∗ h(r)<br />

ɛ p − ɛ h + ¯hω + iη V (r, r′ ) [x(r ′ ) + y(r ′ )] = 0 ,<br />

where the small imaginary parts have been introduced to maintain causality.<br />

Now we multiply the first equation ϕ ∗ h(r ′′ )ϕ p (r ′′ ) <strong>and</strong> the second equation<br />

with ϕ h (r ′′ )ϕ ∗ p(r ′′ ) <strong>and</strong> sum over the indices p, h to obtain after the renaming<br />

r ↔ r ′′<br />

x(r) =<br />

y(r) =<br />

∫<br />

∫<br />

d 3 r ′ χ (+)<br />

{<br />

0 (r, r ′ , ω)<br />

d 3 r ′ χ (−)<br />

0 (r, r ′ , ω)<br />

∫<br />

δh ext (r ′ ) +<br />

{<br />

∫<br />

δh ext (r ′ ) +<br />

11<br />

}<br />

d 3 r ′′ V (r ′ , r ′′ ) [x(r ′′ ) + y(r ′′ )] (63)<br />

}<br />

d 3 r ′′ V (r ′ , r ′′ ) [x(r ′′ ) + y(r ′′ )]<br />

(62)


with<br />

Noting that<br />

χ (+)<br />

0 (r, r ′ , ω) = ∑ ph<br />

χ (−)<br />

0 (r, r ′ , ω) = ∑ ph<br />

ϕ p (r)ϕ ∗ h(r)ϕ ∗ p(r ′ )ϕ h (r ′ )<br />

,<br />

¯hω − ɛ p + ɛ h + iη<br />

ϕ ∗ p(r)ϕ h (r)ϕ p (r ′ )ϕ ∗ h(r ′ )<br />

¯hω + ɛ p − ɛ h + iη<br />

. (64)<br />

δρ(r; ω) = [x(r) + y(r)] (65)<br />

<strong>and</strong> defining the Lindhard function for an inhomogeneous system as<br />

χ 0 (r, r ′ ; ω) = χ (+)<br />

0 (r, r ′ , ω) − χ (−)<br />

0 (r, r ′ , ω) (66)<br />

we get, by adding the two equations (63)<br />

∫<br />

∫<br />

δρ(r; ω)− d 3 r ′ d 3 r ′′ χ 0 (r, r ′′ ; ω)V (r ′′ , r ′ )δρ(r ′ ; ω) = d 3 r ′ χ 0 (r, r ′ ; ω)δh ext (r ′ ; ω) .<br />

(67)<br />

This is the desired result. It is known as the “R<strong>and</strong>om Phase approximation”.<br />

Since there are about 25 derivations of this result, I refrain from explaining<br />

what that has to do with “r<strong>and</strong>om phase”.<br />

5 Homogeneous system<br />

In the limit of a homogeneous system, the potential is a function of the<br />

distance<br />

V (r, r ′ ) = V (|r − r ′ |) (68)<br />

We define the Fourier transform with a density factor<br />

∫<br />

Ṽ (q) ≡ ρ<br />

d 3 re iq·r V (r) . (69)<br />

The single-particle wave functions are just plane waves, i.e.<br />

χ (+)<br />

0 (r, r ′ , ω) = 1 ∑ e i(p−h)·(r−r′ )<br />

Ω 2 ¯hω − ɛ p + ɛ h + iη<br />

ph<br />

∑<br />

= ρ Ω q<br />

∫<br />

ρ<br />

≡<br />

(2π) 3<br />

e iq·(r−r′ ) 1 N<br />

∑<br />

h<br />

n(h)¯n(h + q)<br />

¯hω − ɛ h+q + ɛ h + iη<br />

d 3 qe iq·(r−r′) χ (+)<br />

0 (q, ω) , (70)<br />

12


χ (−)<br />

0 (r, r ′ , ω) = 1 ∑ e i(p−h)·(r′ −r)<br />

Ω 2 ¯hω + ɛ p − ɛ h + iη<br />

ph<br />

∑<br />

= ρ Ω q<br />

∫<br />

ρ<br />

≡<br />

(2π) 3<br />

e iq·(r′ −r) 1 N<br />

∑<br />

h<br />

n(h)¯n(h + q)<br />

¯hω + ɛ h+q − ɛ h + iη<br />

d 3 qe iq·(r′ −r) χ (−)<br />

0 (q, ω) . (71)<br />

Since the functions χ (+)<br />

0 (q, ω) <strong>and</strong> χ (−)<br />

0 (q, ω) are invariant under q ↔ −q, we<br />

can add the two functions to the coordinate form of the full <strong>response</strong> function<br />

of the non-interacting system <strong>and</strong> write<br />

χ 0 (r, r ′ ; ω) =<br />

ρ ∫<br />

d 3 qe iq·(r′ −r) χ<br />

(2π) 3 0 (q, ω) (72)<br />

If, furthermore, we approximate the <strong>Hartree</strong>-<strong>Fock</strong> spectrum by the free singleparticle<br />

spectrum, we obtain the familiar Lindhard function. This is actually<br />

consistent with the approximation to leave out the exchange matrix elements<br />

in the matrices A <strong>and</strong> B. We finally transform the full equation (67) in<br />

momentum space <strong>and</strong> solve<br />

or<br />

δρ(q, ω) =<br />

χ(q, ω) =<br />

χ 0 (q, ω)<br />

1 − Ṽ (q)χ 0(q, ω) δ˜h(q, ω), . (73)<br />

χ 0 (q, ω)<br />

1 − Ṽ (q)χ 0(q, ω) . (74)<br />

This is the beloved “RPA” equation for the density-density <strong>response</strong> function.<br />

The present derivation is perhaps a bit complicated, but it shows very well<br />

what kinds of approximations have been made. These are<br />

• Assume a local, tramslationally invariant (effective) interaction<br />

• Omit exchange<br />

• Assume a free single particle spectrum<br />

References<br />

[1] D. Pines <strong>and</strong> P. Nozieres. The Theory of Quantum Liquids, volume I.<br />

Benjamin, New York, 1966.<br />

[2] D. J. Thouless. The quantum mechanics of many-body systems. Academic<br />

Press, New York, 2 edition, 1972.<br />

13

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!