13.11.2014 Views

Blazhko effect in Cepheids and RR Lyr stars

Blazhko effect in Cepheids and RR Lyr stars

Blazhko effect in Cepheids and RR Lyr stars

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Blazhko</strong> <strong>effect</strong><br />

<strong>in</strong> <strong>Cepheids</strong> <strong>and</strong> <strong>RR</strong> <strong>Lyr</strong>ae <strong>stars</strong><br />

Róbert Szabó<br />

Konkoly Observatory<br />

Research Center for Astronomy <strong>and</strong><br />

Earth Sciences of the<br />

Hungarian Academy of Sciences<br />

22 August 2013<br />

Wroclaw, IAU Symposium 301


Outl<strong>in</strong>e<br />

- Introduction – <strong>RR</strong> <strong>Lyr</strong>ae <strong>stars</strong> <strong>and</strong> the <strong>Blazhko</strong> <strong>effect</strong><br />

- What have we learned <strong>in</strong> the past few years ? - Observations<br />

- What have we learned <strong>in</strong> the past few years ? - Theory<br />

- <strong>Cepheids</strong><br />

- Future directions<br />

- Photometry<br />

- Spectroscopy<br />

- Model<strong>in</strong>g


<strong>RR</strong> <strong>Lyr</strong>ae <strong>stars</strong> <strong>and</strong> the <strong>Blazhko</strong> <strong>effect</strong><br />

- amplitude <strong>and</strong> phase<br />

Gillil<strong>and</strong> et al.<br />

modulation<br />

PASP, 122, 131<br />

2010<br />

- light curve shape<br />

deformation<br />

- ampl. mod.:<br />

dA / A ~ 0.03-0.87<br />

- period var:<br />

1-4 % dP/P<br />

Sosynski et al.<br />

AcA 61, 1, 2011<br />

- <strong>Blazhko</strong> period:<br />

5 d -- ~10 yr


Mitteilung über veränderliche Sterne<br />

The beg<strong>in</strong>n<strong>in</strong>g<br />

●<br />

●<br />

S. <strong>Blazhko</strong> 1870 - 1956<br />

●<br />

●<br />

RW Dra phase modulation<br />

Astronomische Nachrichten 175, 327, 1907


The beg<strong>in</strong>n<strong>in</strong>g<br />

On the changes <strong>in</strong> the spectrum, period, <strong>and</strong> lightcurve<br />

of the Cepheid variable <strong>RR</strong> <strong>Lyr</strong>ae.<br />

●<br />

●<br />

●<br />

H. Shapley 1885 - 1972<br />

●<br />

<strong>RR</strong> <strong>Lyr</strong> amplitude modulation<br />

Astrophysical Journal 43, 217, 1916


<strong>Blazhko</strong> <strong>effect</strong> – pre-Kepler results<br />

-<br />

- occurrence rate: ~50% of the <strong>RR</strong>ab <strong>stars</strong> are modulated<br />

Konkoly <strong>Blazhko</strong> Survey (Jurcsik et al. MNRAS 400, 1006, 2009)<br />

- long period modulations (~3000 d )<br />

OGLE (Sosynski et al. AcA 61, 1, 2011)<br />

- t<strong>in</strong>y <strong>and</strong> rapid modulations e.g. SS Cnc P BL<br />

= 5.3 d<br />

-<br />

Jurcsik et al. AJ 132, 61, 2006<br />

- stellar structure varies dur<strong>in</strong>g the cycle<br />

Sódor et al. MNRAS 394, 261, 2009<br />

-<br />

-<br />

- multiple modulation periods , e.g. CZ Lac<br />

Sódor et al. MNRAS 411, 1585, 2011


Kepler <strong>and</strong> the <strong>Blazhko</strong> <strong>effect</strong><br />

Quasi-cont<strong>in</strong>uous data + extreme precision ---><br />

- ~40% of the <strong>RR</strong>ab <strong>stars</strong> are modulated<br />

- <strong>in</strong>credible diversity of modulation patterns<br />

- phase modulation <strong>in</strong> all <strong>Blazhko</strong> <strong>stars</strong><br />

- <strong>Blazhko</strong> cycles are not strictly repetitive<br />

- long term variations of the modulation cycle<br />

- multiple modulation periods


V445 <strong>Lyr</strong> aka KIC 618029<br />

Guggenberger et al. MNRAS 424, 649, 2012


Extreme modulation:<br />

V445 <strong>Lyr</strong> aka KIC 6186029<br />

Q1+Q2+Q3


Kepler <strong>Blazhko</strong> 'zoo'<br />

Q0-Q12 1061 days<br />

Benkő et al. 2013 <strong>in</strong> prep.


Multiple modulations<br />

longest P BL<br />

shortest P BL<br />

Benkő et al. 2013 <strong>in</strong> prep


An unexpected Kepler-discovery:<br />

period doubl<strong>in</strong>g (PD) <strong>in</strong> <strong>RR</strong> <strong>Lyr</strong>ae <strong>stars</strong><br />

Manifestation:<br />

- alternat<strong>in</strong>g cycles<br />

- half-<strong>in</strong>teger frequencies<br />

(1/2 f O<br />

, 3/2 f O<br />

, 5/2 f O<br />

…)<br />

Kolenberg, Szabó, Kurtz, et al.<br />

2010, ApJL 713, 198<br />

Szabó, Kolláth, Molnár et al.<br />

2010, MNRAS 409, 1244<br />

<strong>RR</strong> <strong>Lyr</strong> Q1 Kolenberg et al. 2010<br />

PD has never been observed <strong>in</strong> <strong>RR</strong> <strong>Lyr</strong> <strong>stars</strong> nor <strong>in</strong> <strong>RR</strong> <strong>Lyr</strong> models.


Period doubl<strong>in</strong>g <strong>in</strong> <strong>RR</strong> <strong>Lyr</strong> (Q1+Q2)


A Kepler <strong>RR</strong> <strong>Lyr</strong> short-cadence data set<br />

See Kolenberg's talk


Period doubl<strong>in</strong>g <strong>in</strong> CoRoT data<br />

V1127 Aql Szabó et al. 2013 <strong>in</strong> preparation


Period doubl<strong>in</strong>g<br />

Period doubl<strong>in</strong>g:<br />

- <strong>in</strong>terest<strong>in</strong>g nonl<strong>in</strong>ear dynamical phenomenon<br />

- Key to the <strong>Blazhko</strong> enigma:<br />

- period doubl<strong>in</strong>g is seen only <strong>in</strong> <strong>Blazhko</strong> <strong>stars</strong><br />

- period doubl<strong>in</strong>g is seen <strong>in</strong> most of the <strong>Blazhko</strong> <strong>stars</strong><br />

Models <strong>and</strong> explanation<br />

Hydrodynamic calculations proved that the cause of the period<br />

doubl<strong>in</strong>g <strong>effect</strong> is a high order resonance (9:2) between the<br />

fundamental mode <strong>and</strong> the 9 th radial overtone (strange mode).<br />

Szabó, R., Kolláth, Z., Molnár, L. et al. 2010, MNRAS 409, 1244<br />

Kolláth, Z. Molnár, L., Szabó, R. 2011, MNRAS 414, 1111


Hydro results<br />

Kolláth, Molnár, Szabó MNRAS, 414, 1111, 2011<br />

- Florida-Budapest 1D pulsational hydrodynamical code<br />

- PD appears naturally with hydro calculations<br />

- not a transient, bifurcated limit cycle is stable


Period doubl<strong>in</strong>g sp<strong>in</strong>-off<br />

PD led to the discovery of a plethora of other dynamical<br />

phenomena:<br />

- high-order resonances (9:2)<br />

Szabó, Kolláth, Molnár et al. 2010, MNRAS 409, 1244<br />

- presence of high radial overtones (strange modes)<br />

Kolláth, Molnár, Szabó 2011, MNRAS, 414, 1111<br />

- presence of other radial modes (1 st <strong>and</strong> 2 nd overtones)<br />

<strong>in</strong> <strong>Blazhko</strong> <strong>stars</strong><br />

Molnár, Kolláth, Szabó et al. ApJL, 2012, 757, 13<br />

- even low-dimensional chaos<br />

Plachy, Molnár, Kolláth 2013, MNRAS 433, 3590<br />

- new explanation of the <strong>Blazhko</strong> <strong>effect</strong><br />

Buchler & Kolláth ApJ 2011, 731, 24


A new explanation for the <strong>Blazhko</strong> <strong>effect</strong><br />

Buchler & Kolláth ApJL, 731, 24, 2011<br />

Irregular amplitude modulations naturally result from the<br />

nonl<strong>in</strong>ear resonant mode coupl<strong>in</strong>g between the fundamental<br />

mode <strong>and</strong> the 9 th overtone us<strong>in</strong>g amplitude equations.<br />

Hydro: <strong>in</strong> BL Her <strong>stars</strong> Smolec & Moskalik MNRAS 426, 108, 2012


A new explanation for the <strong>Blazhko</strong> <strong>effect</strong><br />

Buchler & Kolláth ApJL, 731, 24, 2011<br />

J. Robert Buchler (1942-2012)


Bifurcation cascades<br />

Bifurcation-cascade<br />

can lead to chaos.<br />

Chaos as found <strong>in</strong><br />

<strong>RR</strong> <strong>Lyr</strong>ae hydro<br />

models.<br />

Indications that<br />

shortest modulation<br />

period Kepler<br />

<strong>Blazhko</strong> <strong>RR</strong> <strong>Lyr</strong>ae<br />

<strong>stars</strong> might be<br />

chaotic.<br />

Kolláth et al. MNRAS, 414, 1111, 2011<br />

Plachy et al. MNRAS, 433, 3590, 2013<br />

Check out R. Smolec's poster


Additional modes <strong>in</strong> <strong>Blazhko</strong> <strong>stars</strong><br />

Nonradial modes can be excited <strong>in</strong> <strong>RR</strong> <strong>Lyr</strong>ae <strong>stars</strong><br />

(e.g. Dziembowski 1977, Van Hoolst et al. 1998)<br />

Possible detections <strong>in</strong> <strong>Blazhko</strong> <strong>stars</strong>:<br />

- V1127 Aql CoRoT (Chadid et al. 2010) at least 3 additional<br />

frequencies<br />

- 101128793 CoRoT (Poretti et al. 2010) 2 additional frequencies<br />

Kepler:<br />

- frequency peaks around the first <strong>and</strong> second overtones <strong>in</strong><br />

many <strong>Blazhko</strong> <strong>RR</strong>ab <strong>stars</strong><br />

Benkő et al. 2010 MNRAS 409, 1585<br />

- Detection of the first overtone <strong>in</strong> <strong>RR</strong> <strong>Lyr</strong>ae, the prototype<br />

Molnár et al. 2012 ApJL 757, L13<br />

CoRoT<br />

Cf. the poster of J. Benkő et al. <strong>and</strong> the talk of P. Moskalik


Period-6 state, 3:4 resonance<br />

<strong>RR</strong> <strong>Lyr</strong>ae, Molnár, Kolláth, Szabó ApJL, 757, L13, 2012


Excited first overtone, triple mode state,<br />

nonl<strong>in</strong>ear asteroseismology<br />

<strong>RR</strong> <strong>Lyr</strong>ae, Molnár, Kolláth, Szabó ApJL, 757, L13, 2012


<strong>Cepheids</strong><br />

Amplitude variation <strong>in</strong> <strong>Cepheids</strong><br />

- Modulations <strong>in</strong> DM Ceps <strong>in</strong> anti-phase<br />

- secular(?) variations<br />

- genu<strong>in</strong>e <strong>Blazhko</strong>-like variation!<br />

Moskalik & Kolaczkowski 2009, MNRAS, 394, 1649<br />

LMC FO/SO Cepheid<br />

Polaris<br />

V473 <strong>Lyr</strong><br />

See P. Moskalik's talk<br />

Molnár et al. 2013 AN <strong>in</strong> press Turner et al. 2005 PASP 117, 207


<strong>Cepheids</strong><br />

Amplitude variation <strong>in</strong> <strong>Cepheids</strong><br />

- Modulations <strong>in</strong> DM Ceps <strong>in</strong> anti-phase<br />

- secular(?) variations<br />

- genu<strong>in</strong>e <strong>Blazhko</strong>-like variation!<br />

Moskalik & Kolaczkowski 2009, MNRAS, 394, 1649<br />

LMC FO/SO Cepheid<br />

Polaris<br />

V473 <strong>Lyr</strong><br />

See L. Molnár's talk<br />

Molnár et al. 2013 AN <strong>in</strong> press Turner et al. 2005 PASP 117, 207


Future


Photometry<br />

US: TESS (Transit<strong>in</strong>g Exoplanet Survey Satellite) 2017-<br />

27 d high-precision photometry of bright <strong>stars</strong><br />

CoRoT


Photometry<br />

EU: PLATO<br />

(PLAnetary Transits <strong>and</strong> Oscillations of <strong>stars</strong>) 2024- ?<br />

Months-years long high-precision photometry of<br />

up to half of the sky<br />

CoRoT


Photometry<br />

EU: PLATO<br />

(PLAnetary Transits <strong>and</strong> Oscillations of <strong>stars</strong>) 2024- ?<br />

Months-years long high-precision photometry of<br />

up to half of the sky<br />

CoRoT


Spectroscopy<br />

Detection of He I <strong>and</strong> He II emission<br />

Preston A&A 507, 1621, 2009, Preston AJ 141, 6, 2011<br />

<strong>RR</strong> <strong>Lyr</strong>: Gillet et al. A&A 553, A59, 2013<br />

See E. Guggenberger's <strong>and</strong> K. Kolenberg's talks<br />

CoRoT<br />

Powerful test for shock-wave formation theories<br />

Radiative hydro, realistic atmosphere computations


2D/3D model<strong>in</strong>g<br />

- Model<strong>in</strong>g nonradial modes<br />

- Realistic turbulent convection<br />

- Interaction between pulsation<br />

<strong>and</strong> convection<br />

- Mode selection<br />

- Interaction between modes<br />

Geroux & Deupree<br />

ApJ 731, 18, 2011<br />

Geroux & Deupree<br />

ApJ 771, 113, 2013<br />

F. Kupka's talk yesterday<br />

Geroux & Deupree<br />

poster<br />

CoRoT


<strong>Blazhko</strong> <strong>effect</strong> – proposed mechanisms<br />

1. Magnetic oblique 2. Resonance model 3. Stothers’ idea<br />

rotator /pulsator model Van Hoolst et al. 1998 Stothers 2006<br />

Shibahashi 2000 Dziembowski & Mizerski 2004 Stothers 2010<br />

Strong magnetic field 1:1 nonl<strong>in</strong>ear resonance Magnetic dynamo <strong>effect</strong> alter<strong>in</strong>g<br />

deforms the purely between the radial fundamental the stellar structure by caus<strong>in</strong>g<br />

radial pulsation mode <strong>and</strong> a nonradial mode variable turbulent convection<br />

Strong magnetic field was Too high amplitude required for Complex turbulent <strong>and</strong><br />

ruled out Chadid et al. 2004, the nonradial mode <strong>in</strong> some cases magnetic dynamo <strong>in</strong>teraction<br />

Kolenberg & Bagnulo 2009<br />

hard to model. Requires<br />

Blazkho period is the rot. period<br />

nonphysical changes<br />

Smolec et al. 2011<br />

Molnár et al. 2012


Latest proposed <strong>Blazhko</strong> mechanisms<br />

Radial resonance model<br />

Buchler & Kolláth 2011<br />

Shockwave <strong>in</strong>teraction<br />

Gillet 2013 A&A, 554, A46<br />

9:2 resonance between the First overtone perturbs the<br />

fundamental mode <strong>and</strong> a<br />

fundamental mode creat<strong>in</strong>g<br />

high radial (strange) overtone<br />

an additional shock wave<br />

supported by full hydro calculations<br />

cause or consequence?<br />

Figures: courtesy of K. Kolenberg


Conclusions<br />

- Space photometry revived the field of <strong>Blazhko</strong> studies<br />

by shedd<strong>in</strong>g new light on the problem<br />

- <strong>Blazhko</strong> <strong>effect</strong> : anyth<strong>in</strong>g but regular<br />

- Period doubl<strong>in</strong>g provided a good h<strong>and</strong>le to tackle the problem<br />

- Additonal modes: complicated nonl<strong>in</strong>ear dynamics,<br />

role of resonances, chaos<br />

- Some <strong>Cepheids</strong> may show the <strong>Blazhko</strong> <strong>effect</strong> as well<br />

- We hope for the cont<strong>in</strong>uation of the space based revolution:<br />

TESS, PLATO, even a re-purposed Kepler


Conclusions<br />

- Space photometry revived the field of <strong>Blazhko</strong> studies<br />

by shedd<strong>in</strong>g new light on the problem<br />

- <strong>Blazhko</strong> <strong>effect</strong> : anyth<strong>in</strong>g but regular<br />

- Period doubl<strong>in</strong>g provided a good h<strong>and</strong>le to tackle the problem<br />

- Additonal modes: complicated nonl<strong>in</strong>ear dynamics,<br />

role of resonances, chaos<br />

- Some <strong>Cepheids</strong> may show the <strong>Blazhko</strong> <strong>effect</strong> as well<br />

- We hope for the cont<strong>in</strong>uation of the space based revolution:<br />

TESS, PLATO, even a re-purposed Kepler<br />

High-amplitude variable star fans (<strong>RR</strong> <strong>Lyr</strong>, Cep, DSCT, ...)<br />

should jo<strong>in</strong> forces to propose a Kepler white paper.<br />

5:30pm spl<strong>in</strong>ter session today


Thank you


L<strong>in</strong>ear 'diagnostic' diagram<br />

of half-<strong>in</strong>teger resonances<br />

Notation: o6 7<br />

:<br />

6 th overtone<br />

with a 7:2<br />

resonance<br />

with the<br />

fundamental<br />

mode<br />

C<strong>and</strong>idates:<br />

o9 9<br />

o6 7<br />

o4 5<br />

Kolláth, Molnár, Szabó MNRAS, 414, 1111, 2011


Nonl<strong>in</strong>ear 'diagnostic' diagram<br />

Blue region:<br />

resonant<br />

positive<br />

Floquet<br />

exponent<br />

(PD)<br />

It follows<br />

the 9:2<br />

resonance<br />

with the 9 th<br />

strange<br />

overtone.<br />

Kolláth, Molnár, Szabó MNRAS, 414, 1111, 2011


Strange modes<br />

Kolláth, Molnár, Szabó MNRAS, 414, 1111, 2011<br />

Strange modes:<br />

- extra modes compared to the adiabatic eigenspectrum<br />

- trapped surface modes<br />

- can be excited, despite be<strong>in</strong>g high order overtones.


In collaboration with<br />

- K. Kolenberg – co-chair of KASC <strong>RR</strong>L & Cep WG<br />

+ other members of<br />

KASC (Kepler Asteroseismic Science Consortium)<br />

- Z. Kolláth, J. Benkő, L. Molnár, E. Plachy<br />

+ other KIK-members,<br />

Kepler Investigations at Konkoly Observatory<br />

http:www.konkoly.hu/KIK/


Acknowledgements<br />

Acknowledg<strong>in</strong>g the support from<br />

- IAU<br />

- the Lendület Young Researchers' Program<br />

- the Bolyai Scholarship of the Hungarian Academy of Sciences<br />

- Hungarian OTKA grant K83790<br />

- HUMAN MB08C 81013 grant of the MAG Zrt<br />

- KTIA URKUT_10-1-2011-0019 grant<br />

- EU FP7 IRSES/ASK grant no. 269194

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!