14.11.2014 Views

Denition approach of learning new topics

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

4.6 Chain Rule and friends 27<br />

Similarly,<br />

Instantaneous Velocity<br />

= lim Average V elocity<br />

∆x<br />

= lim<br />

∆t→0 ∆t<br />

f(t 2 ) − f(t 1 )<br />

= lim<br />

∆t→0 t 2 − t 1<br />

= dx<br />

dt<br />

where Displacement is a function <strong>of</strong> time i.e. x = f(t)<br />

Instantaneous Acceleration = dv<br />

dt = lim ∆v<br />

∆t→0 ∆t<br />

4.6 Chain Rule and friends<br />

If y is a function <strong>of</strong> t and t is a function <strong>of</strong> x then<br />

dy<br />

dx = dy<br />

dt · dt<br />

dx<br />

From chain rule we can nd the derivative <strong>of</strong> composite functions<br />

In y = f(g(x)) let t = g(x) & y = f(t)<br />

Dierentiating,<br />

t = g(x) ⇒ dt<br />

dx = g′ (x)<br />

y = f(t) ⇒ dy<br />

dt = f ′ (t)<br />

Using Chain rule<br />

dy<br />

dx = dy<br />

dt · dt<br />

dx<br />

= f ′ (t) · g ′ (x)<br />

d<br />

dx f(g(x)) = d ∣<br />

∣∣∣t=g(x)<br />

dt (f(t)) d<br />

·<br />

dx g(x)<br />

Parametric form<br />

If we have y = φ(t) and x = ψ(t) two functions which both depend on t.<br />

Then<br />

dy<br />

dx · dx<br />

dt<br />

= dy<br />

dt<br />

dy<br />

dx = dy/dt<br />

dx/dt<br />

4.7 Composition <strong>of</strong> functions<br />

(using chain rule)<br />

<strong>Denition</strong>. If f(x) & g(x) are functions <strong>of</strong> x then composition <strong>of</strong> f & g are<br />

dened as<br />

(f ◦ g)(x) = f(g(x))<br />

This can be generalised as (f ◦ g ◦ h ◦ · · · ◦ s)(x) = f(g(h(· · · s(x) · · · )))

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!