16.11.2014 Views

LNAPL Modeling recovery and endpoint example

LNAPL Modeling recovery and endpoint example

LNAPL Modeling recovery and endpoint example

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>LNAPL</strong> in the subsurface<br />

<strong>LNAPL</strong> <strong>Modeling</strong><br />

<strong>recovery</strong> <strong>and</strong> <strong>endpoint</strong> <strong>example</strong><br />

R<strong>and</strong>all Charbeneau, P.E.<br />

Professor of Civil Engineering, University of Texas<br />

&<br />

Mark Adamski, P.G.<br />

Technical Specialist <strong>and</strong> Environmental Business Manager, BP America


Objective<br />

1. Describe the API<br />

<strong>LNAPL</strong> Liquid<br />

Distribution <strong>and</strong><br />

Recovery <strong>Modeling</strong><br />

Tool (LDRM).<br />

2. Demonstrate<br />

application of the<br />

modeling tool for a<br />

petroleum refinery.<br />

<strong>LNAPL</strong> in the subsurface


<strong>LNAPL</strong> Liquid Distribution <strong>and</strong> Recovery<br />

<strong>Modeling</strong> (LDRM) Tool<br />

Purpose: provide a simple, physically based model to assess<br />

<strong>LNAPL</strong> distribution <strong>and</strong> <strong>recovery</strong> using conventional <strong>LNAPL</strong><br />

liquid <strong>recovery</strong> technologies (single <strong>and</strong> dual-pump wells,<br />

vacuum-enhanced wells, skimmer wells, <strong>and</strong> trenches) based<br />

on <strong>LNAPL</strong> thickness in a monitoring well<br />

Chronology:<br />

• 1999 Release (API #4682) – dual spreadsheet model using Brooks <strong>and</strong><br />

Corey parameters <strong>and</strong> a simplified relative permeability function (based<br />

on the Burdine equations)<br />

• 2003 Release (API #4729) – multiple spreadsheets (st<strong>and</strong> alone) using<br />

van Genuchten parameters with different spreadsheets for Burdine <strong>and</strong><br />

Mualem relative permeability models, <strong>and</strong> for single <strong>and</strong> two-layer<br />

representations<br />

• 2007 Release (API 4760) – single “Windows” application using van<br />

Genuchten parameters with option of 1-, 2- or 3-layers, relative<br />

permeability models, units, data representation, <strong>and</strong> vertical gradient<br />

through FGS<br />

<strong>LNAPL</strong> in the subsurface


Recovery Well Application<br />

<strong>LNAPL</strong> Plume may be covered by multiple capture<br />

regions, each considered separately<br />

<strong>LNAPL</strong> in the subsurface


Scenario-Based Model<br />

Model Domain Consists Only of a “Capture Region”<br />

Required Site Parameters<br />

Q w<br />

R c<br />

• <strong>LNAPL</strong> thickness, b n<br />

• Ground surface elevation, z gs<br />

• Water table elevation, z wt<br />

• Elevation of soil facies interface,<br />

z 12<br />

, z 23<br />

Radial Flow to a<br />

Recovery Well<br />

<strong>LNAPL</strong> in the subsurface


Required Soil <strong>and</strong> Fluid Parameters<br />

Soil Parameters<br />

• Porosity, n<br />

• Hydraulic conductivity, K ws<br />

• Van Genuchten, α<br />

• Van Genuchten, N<br />

• Irreducible Water Saturation, S wr<br />

Fluid Parameters<br />

• <strong>LNAPL</strong> density (ratio), ρ r<br />

• <strong>LNAPL</strong> viscosity (ratio), µ r<br />

• Air/water surface tension, σ aw<br />

• Air/<strong>LNAPL</strong> surface tension, σ an<br />

• <strong>LNAPL</strong>/water interfacial tension, σ nw<br />

<strong>LNAPL</strong> in the subsurface


Soil Heterogeneity<br />

Up to three soil layers with abrupt vertical facies transition<br />

K w1<br />

, n 1<br />

, α 1<br />

, N 1<br />

, S wr1<br />

z 12<br />

K w2<br />

, n 2<br />

, α 2<br />

, N 2<br />

, S wr2<br />

z 23<br />

K w3<br />

, n 3<br />

, α 3<br />

, N 3<br />

, S wr3<br />

<strong>LNAPL</strong> in the subsurface


Well Parameters<br />

• Recovery time, T R<br />

• Radius of pumping well, R W<br />

• Radius of capture, R C<br />

• Radius of Influence, R I<br />

• Groundwater production rate, Q w<br />

• Water saturated thickness at well, b w<br />

• Suction pressure (vacuum-enhanced system), P v<br />

• Screen length (vadose zone), b a<br />

• Air radius of capture, R A<br />

• If Q w<br />

= 0 <strong>and</strong> P v<br />

= 0 then Skimmer Well is assumed<br />

<strong>LNAPL</strong> in the subsurface


Application to a Closed Refinery Site Located Near<br />

the Missouri River<br />

<strong>LNAPL</strong> in the subsurface


Application of LLRM<br />

Recovery well at a industrial site in the Midwestern U.S.<br />

<strong>LNAPL</strong> in the subsurface


Cross-Section Layout<br />

<strong>LNAPL</strong> in the subsurface


Cross-Section A-A’<br />

<strong>LNAPL</strong> in the subsurface


Site-Specific Data<br />

• Recovered fluid measurements<br />

• <strong>LNAPL</strong> density <strong>and</strong> viscosity<br />

• Surface <strong>and</strong> interfacial tension values<br />

• Soil core measurements<br />

• Grain size distribution<br />

• Capillary pressure curves<br />

• Hydraulic conductivity<br />

• <strong>LNAPL</strong> saturation (Dean Stark method)<br />

• Site-specific<br />

• <strong>LNAPL</strong> <strong>recovery</strong> rates<br />

• Groundwater <strong>recovery</strong> rates<br />

<strong>LNAPL</strong> in the subsurface


<strong>LNAPL</strong> Thickness <strong>and</strong> Water Table<br />

Elevation<br />

<strong>LNAPL</strong> Thickness (ft)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

<strong>LNAPL</strong> Thickness (Gray) <strong>and</strong><br />

Water Table Elevation (Blue)<br />

with Datum at 704.5 ft<br />

0<br />

Aug-96 Aug-98 Aug-00 Aug-02 Aug-04<br />

Date<br />

<strong>LNAPL</strong> in the subsurface


Monitoring Well Data<br />

These data suggest that for this site with <strong>LNAPL</strong> trapped<br />

beneath FGZ, monitoring well <strong>LNAPL</strong> thickness will<br />

probably be a poor indicator of the amount of <strong>LNAPL</strong><br />

present within the subsurface<br />

• Application of LDRM with no model calibration<br />

<strong>LNAPL</strong> in the subsurface


Fitting Capillary Pressure Curves – General Case<br />

12.0<br />

4 - 714'<br />

4 - 709'<br />

Capillary Pressure Head (m)<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

Burdine<br />

a = 0.80 m-1<br />

N = 3.50<br />

Swr = 0.30<br />

Mualem<br />

a = 0.20 m-1<br />

N = 5.0<br />

Swr = 0.55<br />

4 - 707'<br />

5 - 708'<br />

5 - 707'<br />

5 - 705'<br />

6 - 709'<br />

6 - 707'<br />

6 - 704'<br />

vG-B<br />

vG-M<br />

0.0<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2<br />

Saturation<br />

<strong>LNAPL</strong> in the subsurface


Early 1-Layer Model Representation<br />

<strong>LNAPL</strong> in the subsurface


Groundwater Pumping <strong>and</strong> Lowered Water Table<br />

(Smearing)<br />

<strong>LNAPL</strong> in the subsurface


Initial Recovery Estimate for all Wells<br />

350,000<br />

Total <strong>LNAPL</strong> Recovery Volume [gallons]<br />

300,000<br />

250,000<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

Total Modeled NAPL Recovery (All Six Wells - Dual<br />

Pumping)<br />

Total Actual NAPL Recovery (All Six Wells - 2 yrs)<br />

0<br />

0 1 2 3 4 5 6<br />

Time [yr]<br />

<strong>LNAPL</strong> in the subsurface


<strong>LNAPL</strong> <strong>recovery</strong> –<br />

model predicted <strong>and</strong> actual (2 years)<br />

350,000<br />

Total <strong>LNAPL</strong> Recovery Volume [gallons]<br />

300,000<br />

250,000<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

Total Modeled NAPL Recovery (All Six Wells - Dual<br />

Pumping)<br />

Total Actual NAPL Recovery (All Six Wells - 2 yrs)<br />

0<br />

0 1 2 3 4 5 6<br />

Time [yr]<br />

<strong>LNAPL</strong> in the subsurface


<strong>LNAPL</strong> <strong>recovery</strong> –<br />

model predicted <strong>and</strong> actual (2.75 years)<br />

300,000<br />

Modeled vs. Actual <strong>LNAPL</strong> Recovery for the Lower Refinery Recovery Well System:<br />

June 1, 2003 through May 1, 2006 (35 Months)<br />

Total <strong>LNAPL</strong> Recovery Volume [gallons]<br />

250,000<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

Total Dual PumpModeled NAPL Recovery (All Six Wells)<br />

Actual Recovery Summary<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

Time [yr]<br />

<strong>LNAPL</strong> in the subsurface


<strong>LNAPL</strong> <strong>recovery</strong> –<br />

model predicted <strong>and</strong> actual (3.25 years)<br />

300,000<br />

Modeled vs. Actual <strong>LNAPL</strong> Recovery for the Lower Refinery Recovery Well System:<br />

June 1, 2003 through Sep. 14, 2006 (39.5 Months)<br />

Total <strong>LNAPL</strong> Recovery Volume [gallons]<br />

250,000<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

Total Dual PumpModeled NAPL Recovery (All Six Wells)<br />

Actual Recovery Summary<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

Time [yr]<br />

<strong>LNAPL</strong> in the subsurface


<strong>LNAPL</strong> <strong>recovery</strong> –<br />

model predicted <strong>and</strong> actual (5.25 years)<br />

350,000<br />

Modeled vs. Actual <strong>LNAPL</strong> Recovery for the Lower Refinery Recovery Well System:<br />

June 1, 2003 through Aug. 21, 2008 (62.1 Months)<br />

Total <strong>LNAPL</strong> Recovery Volume [gallons]<br />

300,000<br />

250,000<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

Total Modeled NAPL Recovery (All Six Wells - Dual<br />

Pumping)<br />

Total Actual NAPL Recovery (All Six Wells - 2 yrs)<br />

0<br />

0 1 2 3 4 5 6<br />

Time [yr]<br />

<strong>LNAPL</strong> in the subsurface


Why was the model off? (not that it was very far off)<br />

• Was it that - the model or algorithms are pretty good but<br />

not that accurate?<br />

• Was it that – the soil is too variable away from well?<br />

• Was it that – the <strong>LNAPL</strong> Impacts vary away from well?<br />

Nope<br />

<strong>LNAPL</strong> in the subsurface


Water level in Missouri River makes constant<br />

pumping assumption difficult<br />

Groundwater Pumping Rate<br />

System Wide<br />

50<br />

45<br />

One layer model<br />

timeframe<br />

Actual Pumping Rate<br />

Average Pumping Rate<br />

Modelled Pumping Rate<br />

31.9 gpm<br />

40<br />

Groundwater Pumping Rate (GPM)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

26.0 gpm<br />

23.7 gpm<br />

14.5 gpm<br />

30.5 gpm<br />

15.1 gpm<br />

21.7 gpm<br />

10<br />

5<br />

0<br />

Jun-03 Dec-03 Jun-04 Dec-04 Jun-05 Dec-05 Jun-06 Dec-06 Jun-07 Dec-07 Jun-08<br />

<strong>LNAPL</strong> in the subsurface


Vertical Distribution Comparison – 1 Layer versus 3 Layer<br />

740<br />

735<br />

730<br />

<strong>LNAPL</strong> Saturation & Relative Permeability<br />

0.0 0.1 0.2 0.3 0.4<br />

<strong>LNAPL</strong> thickness 7 ft<br />

<strong>LNAPL</strong> Thickness (ft)<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

<strong>LNAPL</strong> Thickness (Gray) <strong>and</strong><br />

Water Table Elevation (Blue)<br />

with Datum at 704.5 ft<br />

Aug-96 Aug-98 Aug-00 Aug-02 Aug-04<br />

<strong>LNAPL</strong> Saturation &<br />

Relative Permeability<br />

0.0 0.2 0.4<br />

Date<br />

Elevation [ft]<br />

725<br />

720<br />

715<br />

710<br />

• <strong>LNAPL</strong> thickness 7 ft<br />

• <strong>LNAPL</strong> thickness 18 ft<br />

• 3 layer accounts SCM<br />

better<br />

• Layering<br />

• <strong>LNAPL</strong> thickness<br />

• etc<br />

705<br />

700<br />

<strong>LNAPL</strong> in the subsurface


Models are non-unique solutions<br />

The better model will correlate to more observations<br />

• January / February 2007 <strong>LNAPL</strong> <strong>recovery</strong> model at the site<br />

was revisited <strong>and</strong> updated using the latest underst<strong>and</strong>ing <strong>and</strong><br />

newest three layer version of the API LDRM.<br />

• Site conditions were unconfined <strong>and</strong> confined aquifer / <strong>LNAPL</strong><br />

conditions versus the 1-Layer model assumed unconfined<br />

conditions<br />

• 1 Layer only modeled the s<strong>and</strong> layer that contained majority of <strong>LNAPL</strong>.<br />

• 1 Layer model could not account for large <strong>LNAPL</strong> thickness observed with<br />

high water table conditions.<br />

Most Significant Difference<br />

for Vertical <strong>LNAPL</strong> Distribution<br />

• Small contributions/impacts of <strong>LNAPL</strong> <strong>recovery</strong> from the upper fine grained<br />

soil layer were not accounted for (but not a big deal)<br />

• 1 Layer model did not illustrate why higher water-table resulted in higher<br />

<strong>recovery</strong> rates or larger gauged thicknesses<br />

• At this site as water-table rose <strong>LNAPL</strong> thickness observed increased<br />

• 3 Layer model sets realistic expectation regarding large gauged<br />

thicknesses versus impacts by accurately accounting for the vertical<br />

variability of soil characteristics<br />

• During the 3-layer model prep - accounting for variable historic<br />

water pumping rates was also identified as necessary for improved<br />

accuracy<br />

<strong>LNAPL</strong> in the subsurface<br />

Most Significant Difference<br />

for Recovery Performance


Updated site model with new 3 layer model<br />

(initial 3 layer model from 2/07)<br />

400,000<br />

Cumulative <strong>LNAPL</strong> Recovery at Six Lower Refinery Recovery Wells<br />

Actual <strong>LNAPL</strong> Recovery vs. One-Layer <strong>and</strong> Three-Layer Model Results: 6/19/2003 to 6/22/2008<br />

350,000<br />

Cumulative <strong>LNAPL</strong> Recovery Volume (Gallons)<br />

300,000<br />

250,000<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

0<br />

One-Layer (2005)<br />

Three-Layer Model (2007)<br />

Actual<br />

0 1 2 3 4 5 6<br />

Time (Years)<br />

updated through 5/1/2008<br />

<strong>LNAPL</strong> in the subsurface


AK2<br />

Updated site model with new 3 layer model<br />

(1.75 yrs of additional <strong>recovery</strong>)<br />

400,000<br />

Cumulative <strong>LNAPL</strong> Recovery at Six Lower Refinery Recovery Wells<br />

Actual <strong>LNAPL</strong> Recovery vs. One-Layer <strong>and</strong> Three-Layer Model Results: 6/19/2003 to 8/21/2008<br />

350,000<br />

Cumulative <strong>LNAPL</strong> Recovery Volume (Gallons)<br />

300,000<br />

250,000<br />

200,000<br />

150,000<br />

100,000<br />

50,000<br />

2 Recent Increases in Q w from<br />

15.1 to 21 <strong>and</strong> 32 GPM<br />

One-Layer (2005)<br />

Three-Layer Model (2007)<br />

Actual<br />

0<br />

0 1 2 3 4 5 6<br />

Time (Years)<br />

<strong>LNAPL</strong> in the subsurface<br />

updated through 5/1/2008


Slide 29<br />

AK2<br />

Mark, for this slide if you double click on the graph, the actual data spread sheet <strong>and</strong> the 1-layer model spread sheet are in here so<br />

you can update this graph as you like. You can make whaterver version you like, exit out of the excel sheet, make a copy, paste<br />

special as a metafile <strong>and</strong> then make a new slide with the picture but the data is then only in one slide to limit file size<br />

akirkman, 8/28/2008


US Army Corp of Engineers makes constant<br />

pumping assumption difficult<br />

Groundwater Pumping Rate<br />

System Wide<br />

50<br />

45<br />

One layer model<br />

timeframe<br />

Actual Pumping Rate<br />

Average Pumping Rate<br />

Modelled Pumping Rate<br />

31.9 gpm<br />

40<br />

Groundwater Pumping Rate (GPM)<br />

35<br />

30<br />

25<br />

20<br />

15<br />

26.0 gpm<br />

23.7 gpm<br />

14.5 gpm<br />

Three layer<br />

model timeframe<br />

15.1 gpm<br />

21.7 gpm<br />

10<br />

5<br />

0<br />

Jun-03 Dec-03 Jun-04 Dec-04 Jun-05 Dec-05 Jun-06 Dec-06 Jun-07 Dec-07 Jun-08<br />

<strong>LNAPL</strong> in the subsurface


Recovery Endpoint – When to Stop <strong>LNAPL</strong> Liquid<br />

Recovery<br />

Performance-based <strong>endpoint</strong>: percent of <strong>LNAPL</strong> in <strong>recovery</strong><br />

liquid Q n<br />

/(Q n<br />

+ Q w<br />

)<br />

1.4<br />

Percent <strong>LNAPL</strong> in Recovery Liquid<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Water Production = 9.7 gpm<br />

0 2 4 6 8 10 12<br />

Time (years)<br />

<strong>LNAPL</strong> in the subsurface


Same Data – Easier to pick <strong>endpoint</strong><br />

Percent <strong>LNAPL</strong> in Recovery Liquid<br />

10<br />

1<br />

0.1<br />

0.01<br />

Time (years)<br />

0 2 4 6 8 10 12<br />

0.001<br />

<strong>LNAPL</strong> in the subsurface


Cumulative well <strong>recovery</strong>: All wells since 1988<br />

(approaching a natural <strong>endpoint</strong> for this system?)<br />

Total Cumulative <strong>LNAPL</strong> <strong>and</strong> Model-Predicted <strong>LNAPL</strong> Recovery - Six Remaining Wells<br />

Cumulative <strong>LNAPL</strong> Recovery (gallons)<br />

4,000,000<br />

3,500,000<br />

3,000,000<br />

2,500,000<br />

2,000,000<br />

1,500,000<br />

1,000,000<br />

500,000<br />

Total Six Well Recoverable <strong>LNAPL</strong><br />

(3.06MM gallons)<br />

Currently 93% <strong>recovery</strong><br />

(2.69MM gallons)<br />

95% of Recoverable <strong>LNAPL</strong><br />

Recovered by 2013<br />

(2.69MM gallons)<br />

Cumulative <strong>LNAPL</strong> Recovery<br />

3-layer Model-Pedicted <strong>LNAPL</strong> Recovery<br />

Cumulative Groundwater Recovery<br />

Model-Predicted GW <strong>recovery</strong><br />

300,000,000<br />

250,000,000<br />

200,000,000<br />

150,000,000<br />

100,000,000<br />

50,000,000<br />

0<br />

1988<br />

1988<br />

1989<br />

1990<br />

1991<br />

1992<br />

1993<br />

1994<br />

1995<br />

1996<br />

1997<br />

1998<br />

1999<br />

2000<br />

2001<br />

2002<br />

2003<br />

2004<br />

2005<br />

2006<br />

2007<br />

2008<br />

2009<br />

2010<br />

Cumulative Groundwater Recovery (gallons)<br />

2011<br />

2012<br />

2013<br />

0<br />

<strong>LNAPL</strong> in the subsurface


Key Points<br />

• API LDRM is a free <strong>and</strong> fairly simple tool<br />

• With good site data <strong>and</strong> an accurate conceptual site model we<br />

can estimate <strong>LNAPL</strong> distribution in the subsurface<br />

• With good site data <strong>and</strong> an accurate conceptual site model<br />

AND GOOD JUDGEMENT we can make good predictions for<br />

<strong>LNAPL</strong> <strong>recovery</strong><br />

• Combine all the above <strong>and</strong> with good underst<strong>and</strong>ing of <strong>LNAPL</strong><br />

behavior, we can have more productive discussions about<br />

expectations for <strong>LNAPL</strong> <strong>recovery</strong> <strong>and</strong> ultimately <strong>LNAPL</strong><br />

<strong>endpoint</strong>s<br />

• Progress of <strong>LNAPL</strong> <strong>recovery</strong> Estimates:<br />

with the old pancake model – within two orders of magnitude<br />

using the LDRM <strong>and</strong> site data – within one order of magnitude<br />

careful use of the LDRM by an experienced user applying GOOD<br />

JUDGEMENT – within a factor of 2 to 3.<br />

<strong>LNAPL</strong> in the subsurface

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!