16.11.2014 Views

The CMS Construction - Infn

The CMS Construction - Infn

The CMS Construction - Infn

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>CMS</strong> <strong>Construction</strong>


(<strong>CMS</strong>) Design Criteria<br />

Very good muon identification and momentum<br />

measurement<br />

Trigger efficiently and measure sign of TeV muons dp/p < 10%<br />

High energy resolution electromagnetic calorimetry<br />

~ 0.5% @ E T ~ 50 GeV<br />

Powerful inner tracking systems<br />

Momentum resolution a factor 10 better than at LEP<br />

Hermetic calorimetry<br />

Good missing E T resolution<br />

(Affordable detector)<br />

Transparency from<br />

the early 90’s


High Interaction Rate<br />

Experimental Challenge<br />

LHC Detectors (especially ATLAS, <strong>CMS</strong>) are radically<br />

different from the ones from the previous generations<br />

pp interaction rate 1 billion interactions/s<br />

Data can be recorded for only ~10 2 out of 40 million crossings/sec<br />

Level-1 trigger decision takes ~2-3 μs<br />

electronics need to store data locally (pipelining)<br />

Large Particle Multiplicity<br />

~ superposed events in each crossing<br />

~ 1000 tracks stream into the detector every 25 ns<br />

need highly granular detectors with good time resolution for low occupancy<br />

large number of channels (~ 100 M ch)<br />

High Radiation Levels<br />

radiation hard (tolerant) detectors and electronics


<strong>The</strong> <strong>CMS</strong> Detector


<strong>The</strong> <strong>CMS</strong> Collaboration (2007)<br />

Member States<br />

Non-Member States<br />

USA<br />

Total<br />

Member States<br />

Non-Member States<br />

USA<br />

Total<br />

Number of<br />

Laboratories<br />

59<br />

67<br />

49<br />

175<br />

# Scientific<br />

Authors<br />

1084<br />

503<br />

723<br />

2310<br />

Associated Institutes<br />

Number of Scientists<br />

Number of Laboratories<br />

Oct. 3rd 2007/gm<br />

62<br />

9<br />

Uzbekistan<br />

Russia<br />

USA<br />

Austria<br />

Belgium<br />

CERN<br />

France<br />

Bulgaria<br />

Italy<br />

Finland<br />

Ukraine<br />

Georgia<br />

Belarus<br />

UK<br />

Poland<br />

Armenia<br />

Portugal<br />

Turkey<br />

Brazil<br />

Serbia<br />

China, PR Spain<br />

Pakistan<br />

China (Taiwan)<br />

Lithuania<br />

Switzerland<br />

Mexico<br />

Korea<br />

Iran Colombia<br />

New-Zealand<br />

Croatia<br />

Ireland India Cyprus<br />

Estonia<br />

2310 Scientific Authors<br />

38 Countries<br />

175 Institutions<br />

Germany<br />

Greece<br />

Hungary


Exploded View of <strong>CMS</strong><br />

Plus Side<br />

Minus Side


Assembly of Iron Yoke<br />

2003


Assembly of the Coil


Assembly of the Coil<br />

Sept 05<br />

Coil: 230 tons<br />

Outer vacuum tank:<br />

13 m long SS tube, φ=7.6 m


Surface Hall: Barrel Muons


Lowering of Heavy Elements<br />

YE+1 (Jan’07)


Lowering of Heavy Elements<br />

Feb 2007


Insertion of Barrel ECAL<br />

Jul’07


Completion of Services on YB0<br />

Nov. ‘07


Dic. ‘07<br />

Lowering of Tracker


Dic. ‘07<br />

Tracker Insertion


Dic. ‘07<br />

Tracker in <strong>CMS</strong>


Extreme engineering: 4T, big dimensions & large magnetic deformation<br />

E/M (kJ/kg)<br />

12.0<br />

10.0<br />

8.0<br />

6.0<br />

4.0<br />

2.0<br />

0.0<br />

ZEUS<br />

TOPAZ<br />

SDC-model<br />

ATLAS -sol.<br />

ALEPH<br />

CDF<br />

H1<br />

CLEO2<br />

DELPHI<br />

VENUS<br />

<strong>The</strong> <strong>CMS</strong> SC Solenoid<br />

Design Goal: Measure 1 TeV/c muons with < 10% resolution<br />

5 modules Φ 6900 mm ; L 2500 mm ; W= 50 t<br />

ATLAS End-caps<br />

10 100 1000 10000<br />

Stored Energy (MJ)<br />

<strong>CMS</strong><br />

ATLAS Barrel<br />

Solenoid composed by<br />

5 modules<br />

(CB-2, CB-1, CB0,<br />

CB+1, CB+2)<br />

I = 20kA


Winding of the Coil<br />

Specific winding technology developed by INFN Genova<br />

in collaboration with Ansaldo Superconduttori<br />

Winding


24 July<br />

Test of the Magnet (2006)<br />

Magnet Current Cycles achieved<br />

during August<br />

28 August<br />

19 kA, 4 Tesla!<br />

2 days<br />

stable<br />

operation<br />

at 3.8 T


Tracking at LHC<br />

Need factor 10 better momentum resolution than at LEP<br />

1000 particles emerging every crossing (25ns)<br />

Fluence over<br />

10 years of<br />

LHC<br />

Operation


Layout of <strong>CMS</strong> Tracking<br />

120 cm<br />

<strong>CMS</strong><br />

TOB<br />

TEC<br />

TIB<br />

TID<br />

Pix<br />

300 cm<br />

Si pixels surrounded by silicon strip detectors<br />

Pixels: ~ 1 m 2 of silicon sensors, 65 M pixels, 100x150 μm 2 , r = 4, 7, 11 cm<br />

Si μstrips : 223 m 2 of silicon sensors, 10 M strips, 10 pts, r = 20 – 120 cm


<strong>The</strong> <strong>CMS</strong> Tracker<br />

• Pixel<br />

• Silicon Strip Tracker<br />

Largest Silicon Strip Detector<br />

ever built:<br />

~200m 2 of silicon,<br />

instrumented volume ~24m 3<br />

TIB (4 layers )<br />

TID (3 disks, 3 rings )<br />

TOB (6 layers)<br />

TEC (9 disks, 7 rings )


Si Modules and Electronics Chain<br />

Si Sensors<br />

Ride on<br />

technology wave<br />

75k chips using<br />

0.25μm technology<br />

Detector<br />

TTCrx<br />

CLK<br />

CCU<br />

Tx/Rx<br />

Tx/Rx<br />

T1<br />

I2C<br />

Control<br />

module<br />

digital<br />

optical<br />

link<br />

μP<br />

PLL<br />

Front End Controller<br />

APV<br />

Optical<br />

transmitter<br />

<br />

<br />

<br />

<br />

analogue<br />

optical <br />

link <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

ADC<br />

<br />

FPGA<br />

Front End Module<br />

TTCrx<br />

DCU<br />

256:1<br />

APV<br />

MUX<br />

FPGA<br />

RAM<br />

Front End Driver


System Components<br />

• Module<br />

<br />

Sensor + FE Hybrid<br />

• chip: APV25 (128 strips) - analog<br />

• Optical converter (AOH)<br />

<br />

one laser/fiber = 256 strips<br />

• Controls/Clock/Trigger<br />

<br />

<br />

Control chip (CCU)<br />

• I2C protocol with modules<br />

• rings of CCUs<br />

Digital optical converted (DOH)<br />

• optical link to VME controller (FEC)<br />

Hybrid+AOH<br />

Controls<br />

String


System Components<br />

Modules (all)<br />

AOH (Perugia)<br />

DOM (Firenze)<br />

CCUM (Cern)<br />

Mother cable (Bari)


<strong>The</strong> Start of the TIB Integration<br />

Apr. ‘05<br />

<strong>The</strong> first string


Si Tracker<br />

TIB<br />

TEC


Si Tracker


Si Tracker


Tracker Readied for Installation<br />

Dead channels ~ 0.5 ‰ stable in time<br />

Noisy channels ~ 0.5 % stable in time


Lead Tungstate ECAL<br />

Design Goal: Measure the energies of photons from a decay of<br />

the Higgs boson to precision of ≤ 0.5%<br />

<strong>CMS</strong> chose scintillating crystals<br />

To <strong>CMS</strong><br />

m 3<br />

10<br />

<strong>CMS</strong><br />

75000 PWO<br />

Cleo II<br />

7800 CsI(Tl)<br />

Belle<br />

8816 CsI(Tl)<br />

From Crystal Ball<br />

5<br />

Babar<br />

6580 CsI(Tl)<br />

Crystal Ball<br />

672 NaI(Tl)<br />

L3<br />

12000 BGO<br />

Crystal Barrel<br />

1380 CsI(Tl)<br />

TAPS<br />

600 BaF2<br />

KTeV<br />

3100 CsI<br />

Alice<br />

17920 PWO<br />

P. Lecoq<br />

1972<br />

1985<br />

1986<br />

1989<br />

1990<br />

1999<br />

2008


<strong>CMS</strong> Requests and PWO<br />

To comply with LHC and <strong>CMS</strong><br />

conditions ECAL must be:<br />

• fast<br />

• compact<br />

• highly segmented<br />

• radiation resistant<br />

1995 1998<br />

2<br />

T dependent: -2%/°C<br />

Very low light output<br />

Very effective in high<br />

energy γ containment


ECAL layout<br />

PWO: PbWO 4<br />

about 10 m 3 , 90 t<br />

barrel cystals<br />

Pb/Si<br />

preshower<br />

Barrel: |η| < 1.48<br />

Barrel: | < 1.48<br />

36 Super Modules<br />

61200 crystals (2x2x23cm(<br />

2x2x23cm 3 )<br />

barrel<br />

Super Module<br />

(1700 crystals)<br />

endcap<br />

supercystals<br />

(5x5 crystals)<br />

EndCap “Dee”<br />

3662 crystals<br />

EndCaps: 1.48 < |η| | | < 3.0<br />

4 Dees<br />

14648 crystals (3x3x22cm<br />

(3x3x22cm 3 )


Choice of the Photodetector<br />

20<br />

d eff ~6μm<br />

40μm<br />

Avalanche photodiodes (APD)<br />

Two 5x5 mm 2 APDs/crystal<br />

- Gain: 50 QE: ~75% @ λ peak = 420 nm<br />

- Temperature dependence: -2.4%/ O C<br />

- Gain dependence on bias V: 3%/V


PWO Production<br />

BARREL ingot<br />

EE INGOT<br />

ENDCAPS ingots<br />

Delivered Barrel crystals<br />

63000<br />

61000<br />

59000<br />

57000<br />

55000<br />

53000<br />

51000<br />

49000<br />

47000<br />

45000<br />

BARREL CRYSTALS ~ 1150 xl/m<br />

Dec-05 Mar-06 Jul-06 Oct-06 Jan-07 Apr-07


EB <strong>Construction</strong>: Regional Centers<br />

Submodule<br />

2x5 crystals<br />

Module<br />

400 crystals<br />

CERN Lab.27<br />

EP-CMA<br />

&<br />

Casaccia<br />

Assembly and test of modules in RC: ENDED in March 2007


INFN/ENEA Regional Center<br />

Check crystals in Rome RC<br />

Glue subunits and check APD gain<br />

<strong>The</strong> first submodule!<br />

Y 2002<br />

<strong>The</strong> first module!


EB <strong>Construction</strong>: Super Modules<br />

Cooling and electronics integration: completion by May 2007<br />

Supermodule<br />

1700 crytsals<br />

Dead channels: 19/61200


Response to high energy electrons<br />

ECAL Performance<br />

0.5%<br />

Temperature Stability: ≤ 0.1 °C<br />

Light response stability: ≤ 0.1%


ECAL: Cosmics Signal in <strong>CMS</strong>


Layout of <strong>CMS</strong> Muon System<br />

250 DTs 468 CSCs 480 RPCs


Muon System: Drift Tubes<br />

42mm<br />

Wire<br />

Mylar<br />

Electrode<br />

Strip<br />

13 mm<br />

Spatial resolution:<br />

Single cell ∼ 200 μm<br />

Chamber ∼ 100 μm


DT Chambers Assembly<br />

Legnaro Assembly Hall<br />

Assembly of 250 DT chambers:<br />

70 Aachen, 70 Madrid<br />

70 Padova, 40 Torino<br />

•1 layer= 70 wires<br />

• 27 gluing operations/chamber<br />

• 1 gluing operation = 1 day<br />

Precision of 100 μm over 5-10 m 2<br />

Torino Assembly Hall


Muon System: Start of Installation<br />

First installation Aug.03<br />

CERN ISR<br />

Salvato<br />

First installation test Aug. 2002<br />

Peghin


Muon System Completed<br />

ISTALLATION OF THE LAST<br />

OF THE 250 DT CHAMBERS<br />

IN THE CAVERN. IN WHEEL<br />

YB0<br />

26 Oct. 2007


Muon System: YB0 DTs in Operation!<br />

30Hz<br />

S03<br />

15Hz<br />

S01<br />

3Hz<br />

S12<br />

10Hz<br />

17Hz<br />

S11


Muon System: Resistive Plate Chambers<br />

Gas mixture<br />

95.5 C2H2F4<br />

95.5 C<br />

3.5 iC4H10<br />

0.3 SF6<br />

+ RH 50%<br />

Main Unit of a RPC:<br />

Single Gap (SG)<br />

Two SG coupled with<br />

readout plane in between<br />

Main characteristics of the RPCs<br />

used in <strong>CMS</strong>:<br />

•Bakelite thickness: 2 mm<br />

•Bakelite bulk resistivity :<br />

2-6 10 10 Ωcm<br />

• Gas Gap width: 2 mm<br />

•Operating voltage: 9.2-9.8 kV


RPC chamber layout<br />

480 RPCs coupled with DTs and inserted<br />

into the iron return yoke of the magnet<br />

RB4 120 chambers (2 double gaps/chamber)<br />

RB3 120 chambers (2 double gaps/chamber)<br />

RB2 60 chambers (2 double gaps/chamber) +<br />

60 chambers (3 double gaps/chamber)<br />

RB1 120 chambers (2 double gaps/chamber)<br />

Forward UP<br />

Backward UP<br />

Double<br />

Gap DG<br />

Double<br />

Gap DG<br />

Forward Down<br />

Backward Down


RPC Performance<br />

Cluster size<br />

Efficiency<br />

Counting rate<br />

All parameters are<br />

compatible with the<br />

results obtained during<br />

the production tests


RPC: First Events in <strong>CMS</strong>


First Closure of the <strong>CMS</strong> Experiment<br />

(2006)


Magnet Test & Cosmic Challenge<br />

(MTCC)<br />

ECAL<br />

Magnet<br />

HCAL<br />

Tracker<br />

Muon chambers


Run 2605 / Event 3981 / B 3.8 T / 27.08.06


Cosmics in the Tracker (Bat 186)<br />

A cosmic at -15°C<br />

Validated clusters shown<br />

Example of Performance<br />

Normal Strips 99.852 %<br />

(241 313 Strips)<br />

Dead Strips 0.116 %<br />

(275 Strips)<br />

Noisy Strips 0.032 %<br />

(76 Strips)<br />

•<strong>The</strong> Quality of the <strong>CMS</strong> Tracker is Excellent:<br />

• Dead or Noisy Strips < 3 / 1000<br />

• Signal: Noise > 25:1 in Peak Readout Mode<br />

• Enormous experience gained in operating the Tracker at TIF


Performance of <strong>CMS</strong>: Overview<br />

Tracking<br />

HCAL<br />

b-tagging

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!