16.11.2014 Views

Advances in Precision Sand Casting of Aluminum Engine ... - AUTO21

Advances in Precision Sand Casting of Aluminum Engine ... - AUTO21

Advances in Precision Sand Casting of Aluminum Engine ... - AUTO21

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Advances</strong> <strong>in</strong> <strong>Precision</strong> <strong>Sand</strong> Cast<strong>in</strong>g <strong>of</strong><br />

Alum<strong>in</strong>um Eng<strong>in</strong>e Blocks<br />

Dr. Robert Ian Mackay,<br />

Nemak <strong>of</strong> Canada Corporation<br />

Dr. Jerry Sokolowski,<br />

University <strong>of</strong> W<strong>in</strong>dsor<br />

June 03, 2008


Agenda<br />

•The Problem: Durability <strong>of</strong> Alum<strong>in</strong>um Cast Eng<strong>in</strong>e Blocks<br />

•Cast<strong>in</strong>g Methods To Address Bulkhead Integrity<br />

•Alloy Chemistries: Subject <strong>of</strong> Research<br />

•Test<strong>in</strong>g Analysis & Results<br />

– ASTM 466-6<br />

– Staircase Fatigue Test<strong>in</strong>g<br />

2


Bulkhead Cyclic Loads<br />

LLT CA vs Bulkhead loads<br />

bulkhead loads<br />

45000<br />

40000<br />

35000<br />

30000<br />

25000<br />

20000<br />

15000<br />

10000<br />

5000<br />

Series5<br />

Series2<br />

Series3<br />

Series4<br />

0<br />

0 100 200 300 400 500 600 700 800<br />

crank angle


Fatigue Damage <strong>in</strong> Bulkhead Sections


Cast<strong>in</strong>g Methods To Address Bulkhead Integrity


Metallurgical Characterization <strong>of</strong> the 4.6L<br />

Eng<strong>in</strong>e Block Cast<strong>in</strong>g<br />

Bulkhead Section<br />

Identification<br />

A<br />

B<br />

C<br />

D<br />

Fatigue, Tensile and Metallographic Test<br />

Samples<br />

E<br />

Bulkhead Sections


Fatigue Environmental Test Chamber<br />

a b c<br />

d<br />

e<br />

f<br />

Figures a) – f) : a) Mounted fatigue test sample <strong>in</strong>side an environmental test chamber, b) Close up <strong>of</strong> the mounted fatigue<br />

test sample <strong>in</strong> high temperature 35 kN capacity grips, c) View <strong>of</strong> the mounted fatigue test sample <strong>in</strong>side the environmental<br />

test chamber and temperature controller, d) entire test frame and environmental test chamber, e) Load frame and<br />

environmental test chamber and f) Mounted stra<strong>in</strong> gauge test sample.


Rate <strong>of</strong> heat<strong>in</strong>g for the fatigue test sample and the<br />

environmental test chamber


Staircase Fatigue Test<strong>in</strong>g Methodology<br />

Failure<br />

σ 2<br />

Run out<br />

Mean Stress<br />

(Fully Reversed, R = -1))<br />

σ 1<br />

Δσ<br />

1 2 3<br />

Sample Number<br />

Three fatigue test samples at the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> a staircase test. The sequence<br />

would cont<strong>in</strong>ue until the desired number <strong>of</strong> tests have been completed.


Effect <strong>of</strong> Alloy Chemistry<br />

• Freez<strong>in</strong>g Range (FR): Temperature gap between Liquidus (start <strong>of</strong> phase<br />

growth) and Solidus (complete alloy solidification).<br />

– Si: <strong>in</strong>creas<strong>in</strong>g its concentration shortens FR.<br />

– Cu: <strong>in</strong>creas<strong>in</strong>g its concentration lengthens FR.<br />

W319<br />

Alloy<br />

af s<br />

αDEN<br />

= 43%<br />

Hydrostatically<br />

Stressed liquid<br />

Alloy Si Fe Cu Mn Mg Ni Zn Ti<br />

WA328 9.17 0.372 1.02 0.159 0.310 0.185 0.145 0.076<br />

WB328 8.68 0.833 1.02 0.372 0.300 0.176 0.140 0.074<br />

WA328<br />

Alloy<br />

af s<br />

αDEN<br />

= 30%<br />

Less<br />

Hydrostatically<br />

Stressed liquid<br />

Pores


Example - 4.6L V8 Block<br />

(No chill with λ 2 = 55 mm structure)<br />

120<br />

Fully Reversed Stress (MPa)<br />

(R = -1, Operat<strong>in</strong>g Temperature = 120°C)<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Passed test (W319 with 70 ppm Sr)<br />

Failed test (W319 with 70 ppm Sr)<br />

Passed test (W319 with Gra<strong>in</strong> ref<strong>in</strong>er)<br />

Failed test (W319 with Gra<strong>in</strong> ref<strong>in</strong>er)<br />

Passed test (WA328)<br />

Failed test (WA328)<br />

0 5 10 15 20 25 30 35<br />

Sample Number


SEM/SE Micrograph <strong>of</strong> 4.6L V8 Block (WA328) Fatigue<br />

Test Sample #84,933,391<br />

#1<br />

Cycles, 75.8 MPa<br />

Transition l<strong>in</strong>e<br />

Pores<br />

1<br />

Shr<strong>in</strong>kage pores<br />

2<br />

200 μm<br />

#2<br />

3<br />

Interconnected<br />

Shr<strong>in</strong>kage pore<br />

1 mm<br />

(SEM/SE) micrograph taken from the fatigue test<br />

sample (sample # 8) fracture surface. The stress was at<br />

75.8 MPa & had a life <strong>of</strong> 4,933,391 cycles. The dashed<br />

boxes are shown at a higher magnification <strong>in</strong> Figures<br />

6.4.2l, 6.4.2n and 6.4.2p.<br />

200 μm<br />

#3<br />

Cracked Si Particles<br />

100 μm


Maximum Pore Diameter (μm)<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Relationship Between Porosity & HCF<br />

W319 (Al-5Ti-1B-10Sr)<br />

W319 (Al-5Ti-1B)<br />

af s<br />

αDEN<br />

Maximum Pore Diameter<br />

Mean HCF 4.6L W319 (In-furnace 70 ppm Sr)<br />

Mean HCF 4.6L W319 (In-mould Al-5Ti-1B)<br />

Mean HCF 4.6L WA328<br />

0 20 40 60 80 100<br />

Mean High Cycle Fatigue (MPa)<br />

WA328<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Area Fraction Porosity (%)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!