18.11.2014 Views

Chapter 11 Op-Amp Applications - Webstaff.kmutt.ac.th

Chapter 11 Op-Amp Applications - Webstaff.kmutt.ac.th

Chapter 11 Op-Amp Applications - Webstaff.kmutt.ac.th

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>11</strong><br />

<strong>Op</strong>-<strong>Amp</strong> <strong>Applications</strong>


<strong>Op</strong>-<strong>Amp</strong> <strong>Applications</strong><br />

Constant-gain multiplier<br />

Voltage summing<br />

Voltage buffer<br />

Controlled sources<br />

Instrumentation circuits<br />

Active filters<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

2<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Constant-Gain <strong>Amp</strong>lifier<br />

Inverting Version<br />

more…<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

3<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Constant-Gain <strong>Amp</strong>lifier<br />

Noninverting Version<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

4<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Multiple-Stage Gains<br />

The total gain (3-stages) is given by:<br />

or<br />

A = A1A2A3<br />

⎛ R ⎞ ⎞ ⎞<br />

⎜<br />

⎛ ⎟⎜<br />

⎛ = ⎜ +<br />

f<br />

R<br />

⎟ −<br />

f<br />

R −<br />

f<br />

A 1<br />

⎟<br />

⎝ R ⎠⎝<br />

R2 ⎠⎝<br />

R3<br />

1<br />

⎠<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

5<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Voltage Summing<br />

The output is <strong>th</strong>e sum<br />

of individual signals<br />

times <strong>th</strong>e gain:<br />

V<br />

o<br />

R<br />

⎜⎛<br />

f<br />

R<br />

f<br />

R<br />

f<br />

= −⎜⎜<br />

V1<br />

+<br />

V2<br />

+<br />

V3<br />

⎝ R1<br />

R 2 R 3<br />

⎟⎞<br />

⎟⎟<br />

⎠<br />

[Formula 14.3]<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

6<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Voltage Buffer<br />

Any amplifier wi<strong>th</strong> no gain or loss is called a unity gain<br />

amplifier.<br />

The advantages of using a unity gain amplifier:<br />

• Very high input impedance<br />

• Very low output impedance<br />

Realistically <strong>th</strong>ese circuits<br />

are designed using equal<br />

resistors (R 1 = R f ) to avoid<br />

problems wi<strong>th</strong> offset<br />

voltages.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

7<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Controlled Sources<br />

Voltage-controlled voltage source<br />

Voltage-controlled current source<br />

Current-controlled voltage source<br />

Current-controlled current source<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

8<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Voltage-Controlled Voltage Source<br />

The output voltage<br />

is <strong>th</strong>e gain times <strong>th</strong>e<br />

input voltage. What<br />

makes an op-amp<br />

different from o<strong>th</strong>er<br />

amplifiers is its<br />

impedance<br />

char<strong>ac</strong>teristics and<br />

gain calculations<br />

<strong>th</strong>at depend solely<br />

on external<br />

resistors.<br />

Noninverting <strong>Amp</strong>lifier Version<br />

more…<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

9<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Voltage-Controlled Voltage Source<br />

The output voltage<br />

is <strong>th</strong>e gain times <strong>th</strong>e<br />

input voltage. What<br />

makes an op-amp<br />

different from o<strong>th</strong>er<br />

amplifiers is its<br />

impedance<br />

char<strong>ac</strong>teristics and<br />

gain calculations<br />

<strong>th</strong>at depend solely<br />

on external<br />

resistors.<br />

Inverting <strong>Amp</strong>lifier Version<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

10<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Voltage-Controlled Current Source<br />

The output current<br />

is:<br />

V1<br />

I o<br />

=<br />

=<br />

R<br />

1<br />

kV<br />

1<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

<strong>11</strong><br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Current-Controlled Controlled Voltage Source<br />

This is simply ano<strong>th</strong>er way<br />

of applying <strong>th</strong>e op-amp<br />

operation. Whe<strong>th</strong>er <strong>th</strong>e<br />

input is a current<br />

determined by V in /R 1 or as<br />

I 1 :<br />

or<br />

V<br />

out<br />

=<br />

−<br />

R<br />

f<br />

R<br />

1<br />

V = −I<br />

out<br />

1<br />

V<br />

R<br />

in<br />

L<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

12<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Current-Controlled Controlled Current Source<br />

This circuit may appear<br />

more complicated <strong>th</strong>an<br />

<strong>th</strong>e o<strong>th</strong>ers but it is really<br />

<strong>th</strong>e same <strong>th</strong>ing.<br />

V<br />

V<br />

V<br />

out<br />

out<br />

R<br />

f<br />

out<br />

R<br />

f<br />

⎛<br />

Rf<br />

⎞<br />

= −⎜⎜<br />

V<br />

R ⎟⎟<br />

⎝ in ⎠<br />

V<br />

= −<br />

in<br />

R || R<br />

V<br />

= −<br />

R<br />

1<br />

in<br />

in<br />

in<br />

2<br />

I<br />

I<br />

I<br />

I<br />

o<br />

o<br />

o<br />

o<br />

=<br />

=<br />

=<br />

=<br />

Vin<br />

−<br />

R || R<br />

−V<br />

in<br />

V<br />

−<br />

R<br />

1<br />

in<br />

1<br />

⎛<br />

−I⎜⎜<br />

1 +<br />

⎝<br />

⎛ R<br />

⎜⎜<br />

⎝ R<br />

1<br />

1<br />

R1<br />

R<br />

⎜⎜<br />

⎛ +<br />

⎝ R 2<br />

R<br />

R<br />

2<br />

+ R<br />

× R<br />

1<br />

2<br />

2<br />

2<br />

⎞<br />

⎟⎟<br />

⎠<br />

2<br />

⎞<br />

⎟⎟<br />

⎠<br />

⎞<br />

⎟⎟ = kI<br />

⎠<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

13<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Instrumentation Circuits<br />

Some examples of instrumentation circuits using opamps:<br />

• Display driver<br />

• Instrumentation amplifier<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

14<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Display Driver<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

15<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Instrumentation <strong>Amp</strong>lifier<br />

For all Rs at <strong>th</strong>e same value (except R p ):<br />

V<br />

o<br />

=<br />

⎛<br />

⎜⎜ 1 +<br />

⎝<br />

2R<br />

R<br />

P<br />

⎞<br />

⎟⎟<br />

⎠<br />

( V − V ) = k( V − V )<br />

1<br />

2<br />

1<br />

2<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

16<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Active Filters<br />

Adding cap<strong>ac</strong>itors to op-amp circuits provides external control of <strong>th</strong>e<br />

cutoff frequencies. The op-amp <strong>ac</strong>tive filter provides controllable<br />

cutoff frequencies and controllable gain.<br />

• Low-pass filter<br />

• High-pass filter<br />

• Bandpass filter<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

17<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Low-Pass Filter—First<br />

First-Order<br />

The upper cutoff frequency<br />

and voltage gain are given<br />

by:<br />

f =<br />

OH<br />

1<br />

2πR<br />

1<br />

C<br />

1<br />

A = 1 +<br />

v<br />

R<br />

R<br />

f<br />

1<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

18<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Low-Pass Filter—Second<br />

Second-Order<br />

The roll-off can be made steeper by adding more RC networks.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

19<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


High-Pass Filter<br />

The cutoff frequency is determined by:<br />

f =<br />

OL<br />

1<br />

2πR<br />

1<br />

C<br />

1<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

20<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Bandpass Filter<br />

There are two cutoff<br />

frequencies: upper and<br />

lower. They can be<br />

calculated using <strong>th</strong>e same<br />

low-pass cutoff and highpass<br />

cutoff frequency<br />

formulas in <strong>th</strong>e<br />

appropriate sections.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

21<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!