04.11.2012 Views

B - ICRA

B - ICRA

B - ICRA

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Relativistic spin-precession<br />

in binary pulsars<br />

Michael Kramer<br />

MPI für Radioastronomie<br />

Jodrell Bank Centre for Astrophysics, University of Manchester<br />

M.Kramer – MG12


Outline<br />

• Introduction:<br />

Theoretical expectations<br />

Binary pulsars as labs for spin-precession<br />

• The experiments<br />

Observations, modelling, results<br />

• Applications<br />

GR and alternative theories<br />

Astrophysical uses<br />

• Summary & Conclusions<br />

M.Kramer – MG12


Theoretical expectations<br />

Due to the curvature of space-time the proper reference<br />

frame of a freely falling object suffers “geodetic precession”<br />

Experiments made in Solar System provide precise tests for this<br />

effect and confirm it, e.g.,<br />

- Lunar Laser Ranging<br />

- Gyro-experiments, i.e. Gravity-Probe B<br />

M.Kramer – MG12


Strong-field experiments<br />

We would like to have also a gyroscope or spinning top in the presence<br />

of strong gravitational fields…<br />

We would like to use a massive, spinning test mass where we can<br />

also infer and monitor the orientation of the spin direction<br />

⇒ use binary radio pulsars<br />

• In a binary pulsar system, geodetic precession leads to<br />

“relativistic spin-orbit coupling”<br />

• As a consequence, the pulsar spin precesses about the total angular<br />

momentum, changing the relative orientation of the pulsar<br />

M.Kramer – MG12


• …cosmic lighthouses<br />

• …almost Black Holes:<br />

Pulsars…<br />

mass of ~1.4 Solar Mass within 20km<br />

• …objects of extreme matter<br />

– 10x nuclear density<br />

– B ~ B cr = 4.4 x 10 13 Gauss<br />

– Voltage drops ~ 10 12 volts<br />

– F EM = 10 10-12 F gravity<br />

– High-temperature superfluid superconductor<br />

• …spinning with a wide range of periods:<br />

J1748-2446ad<br />

1.4 ms<br />

Period<br />

42,960 Rotations per Minute<br />

7<br />

J2144-3933<br />

8.5 s<br />

M.Kramer – MG12


Straw-man design of a pulsar<br />

• rotation induces<br />

electric quadrupole field<br />

• charges pulled out of<br />

surface, shielding force<br />

• plasma fills surrounding<br />

• co-rotation with pulsar<br />

• light cylinder: v=R L Ω=c<br />

• open and closed fieldlines<br />

• coherent emission,T b >10 31 K<br />

• MASER emission?<br />

Pulse shape determined by 2-D cut through non-uniform 3D beam:<br />

M.Kramer – MG12


Polarization: Signatures of Geometry<br />

• Geometry is important to understand pulsar properties<br />

• Pulsar emission is highly elliptically (mostly linearly) polarized<br />

• Circular component not understood<br />

• Linear component reflects B-field and geometry<br />

• “Rotating-Vector-Model”<br />

(Radhakrishnan & Cooke 1969)<br />

M.Kramer – MG12


The life of pulsars: death & rebirth<br />

Kramer & Stairs (2008)<br />

Dead pulsars with a<br />

companion can be spun-up<br />

(“recycled”) to become<br />

millisecond pulsars with<br />

WD companion or perhaps<br />

Double Neutron Stars<br />

NASA<br />

M.Kramer – MG12


Spin-Orbit coupling due to misaligned spins<br />

M.Kramer – MG12


Geodetic Precession<br />

• Relativistic Spin-Orbit Coupling<br />

expected<br />

• First prediction for observations<br />

by Damour & Ruffini (1974)<br />

• Precession rate expected in GR:<br />

(e.g. Barker & O’Connell ‘75, Börner et al. ‘75, Hari Dass & Radhakrishnan ‘75)<br />

5/<br />

3<br />

2π ⎞ 2 / 3 mc(<br />

4mp<br />

+ 3mc<br />

) 1<br />

−3<br />

⎟ T�<br />

, T = GM<br />

4 / 3 2 � �<br />

Pb 2(<br />

mp<br />

+ mc)<br />

1−<br />

e<br />

p ⎛<br />

Ω = ⎜<br />

c<br />

⎝ ⎠<br />

What effects do we expect to observe?<br />

M.Kramer – MG12


Geodetic Precession<br />

• Relativistic Spin-Orbit Coupling<br />

expected<br />

• First prediction for observations<br />

by Damour & Ruffini (1974)<br />

M.Kramer – MG12


Geodetic Precession<br />

• Relativistic Spin-Orbit Coupling<br />

expected<br />

• First prediction for observations<br />

by Damour & Ruffini (1974)<br />

Right ideas from the start:<br />

• Changing angles = changing pulsed radiation<br />

• Emission properties modulated with<br />

precession frequency<br />

M.Kramer – MG12


Effects of Geodetic Precession<br />

• Firstly, pulsar may not always be visible<br />

• Line-of-Sight will change<br />

• Changes in pulse shape, width and polarization<br />

M.Kramer – MG12


Effects of Geodetic Precession<br />

Cutting the beam at different precession phases:<br />

• Firstly, pulsar may not always be visible<br />

• Line-of-Sight will change<br />

• Changes in pulse shape, width and polarization<br />

M.Kramer – MG12


Observations and Experiments<br />

• For geodetic precession to be observed, we need binary system with<br />

misalignment between pulsar spin and total angular momentum vector<br />

• We require a system where last component was formed in an<br />

asymmetric supernova explosion<br />

P(ms) P b (d) x(lt-s) e Ω(º/yr)<br />

J0737-3039 22.7/2770 0.10 1.42/1.51 0.09 4.8/5.1<br />

B1534+12 37.9 0.42 3.73 0.27 0.5<br />

J1518+4904 40.9 8.64 20.0 0.25 -<br />

J1756-2251 28.5 0.32 2.76 0.18 0.76<br />

DNS J1753-2240 95.1 13.63 18.1 0.30 -<br />

J1811-1736 104.2 18.8 34.8 0.83 -<br />

J1829+2456 41.0 1.18 7.24 0.14 0.08<br />

J1906+0746 144.1 0.17 1.42 0.09 2.2 preecession<br />

B1913+16 59.0 0.33 2.34 0.62 1.2 =<br />

B2127+11C 30.5 0.34 2.52 0.68 1.9<br />

PSR-WD J1141-6545 394.0 0.20 ?? 0.17 1.4 Red observed<br />

M.Kramer – MG12


The first: PSR B1913+16<br />

Discovered by Hulse & Taylor in 1974<br />

M.Kramer – MG12


The pulse shape of PSR B1913+16<br />

First studies by Weisberg, Romani & Taylor (1989):<br />

Weisberg et al.’89<br />

No conclusive result:<br />

1981<br />

• Amplitude was changing slowly<br />

changing with time<br />

• Expected change in width was<br />

not detected!<br />

• \<br />

M.Kramer – MG12


The pulse shape of PSR B1913+16<br />

First studies by Weisberg, Romani & Taylor (1989):<br />

Kramer ‘98<br />

Weisberg et al.’89<br />

1995<br />

1981<br />

1.2%/yr<br />

M.Kramer – MG12


The pulse shape of PSR B1913+16<br />

First clear detection of geodetic precession (Kramer 1998):<br />

Kramer (1998, 2000, 2002,2003)<br />

Kramer (1998)<br />

• Profile found to become narrower with time<br />

• Prediction: pulsar will disappear in 2025!<br />

• Simple four parameter model incl misalignment angle: SN explosion<br />

• Derive beam map or make quantitative test…<br />

M.Kramer – MG12


The first results…<br />

Faith… Confirmation…<br />

M.Kramer – MG12


Beam mapping<br />

• Observations explained in simple bean model (Kramer 2000)<br />

• High-sensitivity Arecibo observations suggest some deviation<br />

(Weisberg & Taylor 2000, 2002; Clifton & Weisberg 2008):<br />

Kramer (2000)<br />

Basic idea: use slices through beam with time to reconstruct<br />

the previously unknown 3D image of pulsar beam!<br />

Clifton & Weisberg (2008)<br />

M.Kramer – MG12


The second case: B1534+12<br />

Smaller effect but first with polarization information<br />

(Stairs et al. 2000, 2004):<br />

• First time to measure changing geometry from polarization<br />

• Combination of aberration and precession effect detected<br />

• First attempt to derive quantitative test of precession rate<br />

M.Kramer – MG12


The second case: B1534+12<br />

Smaller effect but first with polarization information<br />

(Stairs et al. 2000, 2004):<br />

• First time to measure changing geometry from polarization<br />

• Combination of aberration and precession effect detected<br />

• First attempt to derive quantitative test of precession rate<br />

M.Kramer – MG12


The third: PSR J1141-6545<br />

• First non-DNS system: unusual system where young pulsar is in<br />

orbit with old heavy white dwarf<br />

• Relativistic 4.7-hr orbit, ideal for tests of alternative theories<br />

of gravity (see Verbiest’s talk in EG6 session on Thursday!)<br />

• Monitored by us since 2000, but also studied and first published<br />

by Hotan et al. (2005):<br />

Hotan et al. (2005)<br />

M.Kramer – MG12


The third: PSR J1141-6545<br />

• First non-DNS system: unusual system where young pulsar is in<br />

orbit with old heavy white dwarf<br />

• Relativistic 4.7-hr orbit, ideal for tests of alternative theories<br />

of gravity (see Verbiest’s talk in EG6 session on Thursday!)<br />

• Monitored by us since 2000, but also studied and first published<br />

by Hotan et al. (2005)<br />

• Rich behaviour in pulse shape, width and polarization (see<br />

Manchester et al. to be submitted):<br />

Manchester et al. (subm.)<br />

Manchester et al. (subm.)<br />

M.Kramer – MG12


The third: PSR J1141-6545<br />

• New modeling (see Kramer & Wex 2009) uses previously unused<br />

information about spin-axis provided by absolute position angle<br />

• Requires careful calibration and RM measurements<br />

(Manchester et al. to be submitted:)<br />

Position Angle (deg)<br />

Time<br />

Precession Phase<br />

Misalignment Angle<br />

M.Kramer – MG12


The third: PSR J1141-6545<br />

• New modeling (see Kramer & Wex 2009) uses previously unused<br />

information about spin-axis provided by absolute position angle<br />

• Requires careful calibration and RM measurements<br />

(Manchester et al. to be submitted:)<br />

• Self-consistent model that allows us to fit RVM to all epochs<br />

(i.e. 930 data points to just 4 parameters):<br />

Manchester et al. (subm.)<br />

• First mapping of unrecycled pulsar beam pattern!<br />

M.Kramer – MG12


The fourth: PSR J1906+0746<br />

• Second most relativistic pulsar (Lorimer et al. 2006)<br />

• Geodetic precession easily detected via interpulse component:<br />

Lorimer et al. (2005)<br />

• Unrivalled constraints from polarisation: excellent fit of<br />

4-param’s Kramer & Wex (2009) model: χ 2 =1.21 for 632 D.o.F. !<br />

Desvignes et al. (to be submitted)<br />

Desvignes et al. (2008)<br />

See talk by Gregory<br />

Desvignes in EG6 on<br />

Thursday!<br />

M.Kramer – MG12


The best: PSR J0737-3039<br />

PSR J0737-3039A/B discovered in April 2003:<br />

first and only system with two active pulsars<br />

Burgay et al. (2003), Lyne et al. (2004)<br />

J0737-3039<br />

McLaughlin et al. (2004)<br />

• A young 2.77-s pulsar in a 2.4-hr<br />

orbit with an old 22-ms pulsar.<br />

• Orbital velocities of 1 Million km/h!<br />

• Ideal lab for gravitational physics and<br />

understanding pulsars and neutron stars.<br />

M.Kramer – MG12


The Double Pulsar<br />

Five(!) unique strong-field tests, represented in a single mass-mass plot:<br />

Mass ratio & 6 PK parameters<br />

⇔7-2 = 5 tests of GR!<br />

Periastron<br />

advance<br />

More than in any system!<br />

Gravitational<br />

redshift<br />

s<br />

s<br />

exp<br />

obs<br />

Shapiro<br />

delay<br />

Best strong-field test<br />

= 1.<br />

0000 ± 0.<br />

0005<br />

Kramer et al (2006), Breton et al. (2008)<br />

Kramer et al. (2006)<br />

See Rob Ferdman’s talk<br />

in EG6 on Thursday<br />

and public talk in evening!<br />

Grav. wave emission<br />

Mass ratio<br />

(two orbits!)<br />

Shapiro<br />

delay<br />

Spin-orbit<br />

coupling<br />

M.Kramer – MG12


Geodetic Precession in J0737-3039A<br />

• Precession period of double pulsar only 71/74 years!<br />

A B<br />

Ferdman et al (2008)<br />

Manchester et al. (2005)<br />

Burgay et al. (2005)<br />

M.Kramer – MG12


Sin i=0.99987(-48.+13)<br />

A B<br />

McLaughlin et al. (2004)<br />

Eclipses of A<br />

To Earth<br />

20,000km<br />

Orbital phase →<br />

Peaks of emission not random!<br />

Separated by P and P/2 of B<br />

• Caused by synchrotron<br />

absorption of plasma trapped<br />

in B’s magnetosphere and<br />

heated by A’s wind: see<br />

Luytikov & Thompson (2005)<br />

← lasting for ~27 sec<br />

M.Kramer – MG12


Spin precession of B also seen in eclipse pattern:<br />

Breton et al. (2008):<br />

• Eclipse profile is changing<br />

with time<br />

• Pattern is changing due to<br />

relativistic spin precession<br />

M.Kramer – MG12


Relativistic Spin-Precession<br />

• We can both explain the eclipse pattern and measure the precession<br />

rate as a new test of general relativity (Breton et al 2008):<br />

See Rene Breton’s talk<br />

In EG6 on Thursday!<br />

• Measured with 13% precistion and in agreement with GR’s<br />

precession rate of 5.1 deg/yr<br />

• Also, first unique constraint on alternative theories due to<br />

measurement of theory-independent spin-precession parameter<br />

M.Kramer – MG12


Theory-independent constraints<br />

In a general class of theories, one can describe the SO-coupling<br />

with a Lagrangian (see Damour & Taylor 1992):<br />

Coupling function, different for different theories<br />

In this framework, we write a general (average) precession rate<br />

for pulsar B as:<br />

with<br />

Coupling constant<br />

Strong-field modified grav. constant<br />

M.Kramer – MG12


Theory-independent constraints<br />

We can rewrite precession rate in terms of observables:<br />

measured to be determined<br />

Note that both X A and X B are simultaneous<br />

measurable only in the Double Pulsar!<br />

M.Kramer – MG12


Theory-independent constraints<br />

We can rewrite precession rate in terms of observables:<br />

measured to be determined<br />

Note that both X A and X B are simultaneous<br />

measurable only in the Double Pulsar!<br />

We measure: whereas in GR:<br />

M.Kramer – MG12


In other words, we have for the first time a measurement of the<br />

coupling constant!<br />

With<br />

Theory-independent constraints<br />

whereas in GR we expect a value of 2.<br />

� This is the first time that we have a measurement of this strongfield<br />

parameter. All theories of gravity must predict this value.<br />

Unique Unique test test of of effacement effacement property property of of spinning spinning body! body!<br />

M.Kramer – MG12


Applications of spin-orbit coupling<br />

• Tests of theories of gravity<br />

• Beam mapping and emission physics<br />

• Core collapse supernovae and kick mechanisms:<br />

- first such application by Wex et al. (2000) for PSR B1913+16:<br />

- From geodetic precision<br />

derive geometry<br />

- Compute back in time<br />

until last supernova<br />

- Use conservation laws<br />

(momentum etc.) to<br />

constrain pre-supernova<br />

system e.g. derive kick<br />

amplitude and direction<br />

Kick velocity<br />

Polar angle of kick<br />

M.Kramer – MG12


PDF<br />

Applications of spin-orbit coupling<br />

• Tests of theories of gravity<br />

• Beam mapping and emission physics<br />

• Core collapse supernovae and kick mechanisms:<br />

- first such application by Wex et al. (2000) for PSR B1913+16<br />

- see large amount of work by Kalogera group, e.g. Willems et al. ’04<br />

- or our work on PSR J0737-3039B by Stairs et al. (2006)<br />

Stairs et al. (2006)<br />

J0737-3039<br />

B1534+12<br />

J0737-3039<br />

B1534+12<br />

⇒ Progenitor of B was light: 1.37-1.80 M � (95%)!<br />

⇒ Different formation process? WD collapse?<br />

J0737-3039<br />

B1534+12<br />

M.Kramer – MG12


Applications of spin-orbit coupling<br />

• Tests of theories of gravity<br />

• Beam mapping and emission physics<br />

• Core collapse supernovae and kick mechanisms:<br />

- first such application by Wex et al. (2000) for PSR B1913+16<br />

- see large amount of work by Kalogera group, e.g. Willems et al. ’04<br />

- or our work on PSR J0737-3039B by Stairs et al. (2006)<br />

• Moment-of-inertia measurement and EoS:<br />

Total periastron advance at 2PN level: Damour & Schaefer (1988)<br />

3β<br />

tot<br />

k<br />

2<br />

0 =<br />

1−<br />

eT<br />

1 0 0 S 0 S S 0β<br />

S<br />

[ ]<br />

2 A A B B<br />

+ f β − g β β − g β<br />

1PN 2PN Spin A Spin B<br />

2πc<br />

1<br />

β =<br />

G P<br />

Neutron star dependent S<br />

2<br />

p<br />

I<br />

m<br />

Lattimer & Schutz (2005)<br />

See Kramer & Wex ‘09<br />

M.Kramer – MG12


Summary & Conclusions<br />

• After first detection in PSR B1913+16, spin-orbit coupling has<br />

been observed, modelled and used in a number of binary pulsars<br />

• We observe all predicted effects like changes in pulse width,<br />

shape, polarisation and overall visibility<br />

• Finally, we are also doing quantitative tests with a first<br />

confirmation of the effacement property of spinning bodies in<br />

strong gravitational fields<br />

• Besides tests of gravitational theories, we have a new tools for<br />

astrophysics to study pulsar beams, the core collapse of massive<br />

stars, the formation of neutron stars and eventually the<br />

measurement of NS moment of inertia with constraints for the<br />

Equation-of-State.<br />

M.Kramer – MG12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!