19.11.2014 Views

Hot and Dense Nuclear Matter - Department of Physics and Astronomy

Hot and Dense Nuclear Matter - Department of Physics and Astronomy

Hot and Dense Nuclear Matter - Department of Physics and Astronomy

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> <strong>Matter</strong><br />

Soren Sorensen<br />

<strong>Department</strong> <strong>of</strong> <strong>Physics</strong><br />

University <strong>of</strong> Tennessee<br />

UTK, October, 2006<br />

Sources:<br />

Bill Zajc<br />

Tom Hemmick<br />

Ken Read<br />

Quark <strong>Matter</strong> 2005 Presentations<br />

All <strong>of</strong> PHENIX


The St<strong>and</strong>ard Model<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 2


Quark Confinement<br />

What happens if we try to “free” a quark from it’s partner?<br />

A typical meson<br />

The meson is being<br />

stretched to separate the<br />

quarks.<br />

The “spring” energy between<br />

the quarks is eventually so<br />

high that a new quark pair is<br />

created -> two new mesons<br />

are formed.<br />

No free quarks. The quarks are confined to be inside hadrons.<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 3


Is there another way we can “free”<br />

the quarks?<br />

Normal <strong>Nuclear</strong> <strong>Matter</strong><br />

Quark Gluon Plasma<br />

Increasing density or temperature<br />

This figure <strong>and</strong> several others in this talk are copied from<br />

“Gauge Field Theories” by Mike Guidry<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 4


Phase Diagram for <strong>Nuclear</strong> <strong>Matter</strong><br />

Partonic <strong>Matter</strong><br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 5


What kind <strong>of</strong> phase transition?<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 6


<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 7


QGP connection to the Big Bang<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 8


How to create a Quark Gluon Plasma in the lab?<br />

A Little “Big Bang”<br />

Our best guess: Collisions between large atomic nuclei at the highest possible energies<br />

Low energy collisions create no QG plasma (we have tried!)<br />

High energy collisions will.<br />

Animation by Jeffery Mitchell. VNI model by Klaus Kinder-Geiger <strong>and</strong> Ron Longacre, Brookhaven National Laboratory<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 9


RHIC’s Experiments<br />

STA<br />

R<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 10


Evolution <strong>of</strong> Heavy Ion Collisions<br />

Preequilibrium<br />

Thermalization<br />

QGP<br />

phase?<br />

Mixed<br />

Phase<br />

Hadronization<br />

Expansion<br />

T < 0<br />

0.1 fm/c<br />

~ 1 fm/c<br />

3-4 fm/c<br />

8–10 fm/c<br />

10 – 20 fm/c<br />

γ, γ∗→ e + e - , μ + μ −<br />

Hard processes (early<br />

stages): Real <strong>and</strong> virtual<br />

photons, leptons, high p T<br />

particles.<br />

π, K, p, n, φ, Λ, Δ, Ξ, Ω, d,…<br />

S<strong>of</strong>t hadrons reflect<br />

medium properties later<br />

in the collision after<br />

hadronization (chemical<br />

freeze-out).<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 11


Late Stage Hadro-Chemistry<br />

Preequilibrium<br />

Therma-<br />

Lization<br />

QGP<br />

phase?<br />

Mixed<br />

Phase<br />

Hadronization<br />

Expansion<br />

T =<br />

0.1 fm/c<br />

~ 1 fm/c<br />

3-4 fm/c<br />

8–10 fm/c<br />

10 – 20 fm/c<br />

π, K, p, n, φ, Λ, Δ, Ξ, Ω, d,…<br />

Relative Hadron<br />

Abundances –<br />

Hadro Chemistry<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 12


Late stage hadrochemistry<br />

• Assume all distributions described by one temperature T <strong>and</strong> one<br />

(baryon) chemical potential μ<br />

(Chemical Equilibrium):<br />

• One ratio (e.g., ⎯p-bar / p ) determines μ / T :<br />

• A second ratio (e.g., K / π ) provides T μ<br />

• Then predict all other hadronic yields <strong>and</strong> ratios:<br />

−( E −μ)/ T 3<br />

dn ~ e d p<br />

− ( E + μ)/<br />

T<br />

p e<br />

= = e<br />

−( E −μ)/<br />

T<br />

p e<br />

−2 μ / T<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 13


•<br />

What do we learn from<br />

Hadro Chemical Thermodynamics<br />

– Beautiful systematics from many<br />

energies <strong>of</strong> freeze-out conditions<br />

– Does not necessarily indicate<br />

• QGP formation <strong>and</strong> Deconfinement<br />

– But …<br />

• Relaxation time <strong>of</strong> Ω (sss)<br />

– Hadronic state: Ω (sss) reaches<br />

chemical equilibrium only after 40-50<br />

fm/c<br />

RHIC<br />

– Partonic state: (sss) reaches chemical<br />

equilibrium in 1-2 fm/c<br />

– Freeze-out happens after max 10-20<br />

fm/c<br />

– Indication that the chemical equilibrium<br />

is reached in a partonic phase.<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 14


Signals from High Density State<br />

Preequilibrium<br />

Therma-<br />

Lization<br />

QGP<br />

phase?<br />

Mixed<br />

Phase<br />

Hadronization<br />

Expansion<br />

T =<br />

0.1 fm/c<br />

~ 1 fm/c<br />

3-4 fm/c<br />

8–10 fm/c<br />

10 – 20 fm/c<br />

High Density Partonic<br />

State Signatures:<br />

Jet Quenching<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 15


Transverse Dynamics<br />

p<br />

p T<br />

θ<br />

Q. How to probe the deep interior <strong>and</strong> the earliest phases <strong>of</strong> the collision?<br />

A. By measuring “hard scatterings” at large p T<br />

“transverse momenta”<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 16


Hard Scattered Partons (= Probes)<br />

• Hard scatterings in nucleonnucleon<br />

collisions produce<br />

jets <strong>of</strong> particles.<br />

schematic view <strong>of</strong> jet production<br />

hadrons<br />

leading<br />

particle<br />

q<br />

jet<br />

• In particular, the jets are<br />

great probes <strong>of</strong> the medium<br />

they traverse<br />

hadrons<br />

jet<br />

leading particle<br />

q<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 17


Calibrated Probes<br />

• Extensive in situ measurements in (simple) p+p collisions at RHIC<br />

– Calibrated probes<br />

– Supported by well-established theory (perturbative Quantum Chromo<br />

Dynamics - pQCD)<br />

Produced pions<br />

Produced photons<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 18


Schematically (Photons)<br />

The scattered direct photons always emerge undisturbed,<br />

because they do not interact via <strong>Nuclear</strong> Forces (Strong<br />

Interactions)<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 19


Direct Photon Spectra in Au+Au<br />

• Now have a calibrated<br />

probe (note agreement<br />

<strong>of</strong> data <strong>and</strong> theory)<br />

• that works in the<br />

complex environment <strong>of</strong><br />

two nuclei (Au+Au )<br />

colliding at high energies<br />

• N binary or N collision scaling<br />

works!<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 20


Jet Quenching<br />

The jet has to make its way out through the hot <strong>and</strong> dense medium<br />

Energy loss (stopping power) depends<br />

critically on type <strong>of</strong> medium:<br />

Hadronic Medium: ~ 0.2 - 0.4 GeV/fm<br />

Partonic Medium: ~ 2 – 3 GeV/fm<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 21


Discovery <strong>of</strong> Strong Suppression<br />

peripheral<br />

N coll<br />

= 12.3 ± 4.0<br />

central<br />

N coll<br />

= 975 ± 94<br />

→<br />

Scaling <strong>of</strong> calibrated probe works in peripheral Au+Au,<br />

but strong suppression in central Au+Au<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 22


<strong>Nuclear</strong> Modification Factor: R AA<br />

• We define the nuclear modification<br />

factor as:<br />

R<br />

• R AA is what we get divided by what we<br />

2 A+<br />

A<br />

expect.<br />

1 d N<br />

Nevt<br />

dpT<br />

dη<br />

• By definition, processes that scale<br />

AA( pT ) = < N<br />

2 N + N<br />

binary > d σ<br />

N + N<br />

σinel<br />

dpT<br />

d η<br />

with the number <strong>of</strong> underlying nucleonnucleon<br />

collisions (N binary ) will produce<br />

R AA = 1 .<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 23


Photons shine, Pions don’t<br />

• Direct photons are not inhibited by hot/dense medium<br />

• Pions (all hadrons) are inhibited by hot/dense medium<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 24


What about the “far-side” jet<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 25


Far Side Jet Disapperance<br />

Pedestal&flow subtracted<br />

Δφ<br />

“partner” in hard scattering is absorbed<br />

in the dense medium<br />

• Strong absorption <strong>and</strong> jet quenching<br />

require high gluon densities<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 26


Collective Flow<br />

Preequilibrium<br />

Therma-<br />

Lization<br />

QGP<br />

phase?<br />

Mixed<br />

Phase<br />

Hadronization<br />

Expansion<br />

T =<br />

0.1 fm/c<br />

~ 1 fm/c<br />

3-4 fm/c<br />

8–10 fm/c<br />

10 – 20 fm/c<br />

Collective flow due to<br />

very early pressure<br />

gradients<br />

Recombination <strong>of</strong><br />

quarks into hadrons<br />

(hadronization)<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 27


Motion Is Hydrodynamic<br />

• When does thermalization occur?<br />

– Strong evidence that final state bulk behavior<br />

reflects the initial state geometry<br />

• Because the initial azimuthal asymmetry<br />

persists in the final state<br />

dn/dφ ~ 1 + 2 v 2 (p T ) cos (2 φ) + ...<br />

y<br />

z<br />

x<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 28


The “Flow” Is Large<br />

• Value <strong>of</strong> v 2 in<br />

dn/dφ ~ 1 + 2 v 2 cos (2 φ) + ..<br />

saturates at ~ 0.2<br />

• Hydrodynamic calculations<br />

show this collective flow is<br />

– characteristic <strong>of</strong><br />

a strongly interacting<br />

state <strong>of</strong> matter with<br />

very low viscosity<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−10 −5 0 5 10<br />

10<br />

5<br />

10<br />

5<br />

0<br />

−5<br />

−10<br />

−10 −5 0 5 10<br />

10<br />

5<br />

– established in the<br />

earliest (geometrically<br />

asymmetric) stage<br />

<strong>of</strong> the collision<br />

– The flow is as strong as it<br />

can be<br />

0<br />

−5<br />

−10<br />

−10 −5 0 5 10<br />

0<br />

−5<br />

−10<br />

−10 −5 0 5 10<br />

<strong>Hot</strong> <strong>and</strong> <strong>Dense</strong> <strong>Nuclear</strong> matter 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!