19.11.2014 Views

Chapter 4 The Structure of the Atom.pdf

Chapter 4 The Structure of the Atom.pdf

Chapter 4 The Structure of the Atom.pdf

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>Structure</strong> <strong>of</strong> <strong>the</strong> <strong>Atom</strong><br />

Section 4.1 Early Ideas About<br />

Matter<br />

Section 4.2 Defining <strong>the</strong> <strong>Atom</strong><br />

Section 4.3 How <strong>Atom</strong>s Differ<br />

Section 4.4 Unstable Nuclei and<br />

Radioactive Decay<br />

Click a hyperlink or folder tab to view<br />

<strong>the</strong> corresponding slides.<br />

Exit


Section 4.1 Early Ideas About Matter<br />

• Compare and contrast <strong>the</strong> atomic models <strong>of</strong><br />

Democritus, Aristotle, and Dalton.<br />

• Understand how Dalton's <strong>the</strong>ory explains <strong>the</strong><br />

conservation <strong>of</strong> mass.<br />

<strong>the</strong>ory: an explanation supported by many<br />

experiments; is still subject to new experimental<br />

data, can be modified, and is considered<br />

successful if it can be used to make predictions<br />

that are true


Section 4.1 Early Ideas About Matter (cont.)<br />

Dalton's atomic <strong>the</strong>ory<br />

<strong>The</strong> ancient Greeks tried to explain<br />

matter, but <strong>the</strong> scientific study <strong>of</strong> <strong>the</strong><br />

atom began with John Dalton in <strong>the</strong><br />

early 1800's.


Greek Philosophers (cont.)<br />

• Many ancient scholars believed matter was<br />

composed <strong>of</strong> such things as earth, water,<br />

air, and fire.<br />

• Many believed<br />

matter could be<br />

endlessly divided<br />

into smaller and<br />

smaller pieces.


Greek Philosophers (cont.)<br />

• Democritus (460–370 B.C.) was <strong>the</strong> first<br />

person to propose <strong>the</strong> idea that matter was<br />

not infinitely divisible, but made up <strong>of</strong><br />

individual particles called atomos.<br />

• Aristotle (484–322 B.C.) disagreed with<br />

Democritus because he did not believe empty<br />

space could exist.<br />

• Aristotle’s views went unchallenged for 2,000<br />

years until science developed methods to test<br />

<strong>the</strong> validity <strong>of</strong> his ideas.


Greek Philosophers (cont.)


Greek Philosophers (cont.)<br />

• John Dalton revived <strong>the</strong> idea <strong>of</strong> <strong>the</strong> atom in<br />

<strong>the</strong> early 1800s based on numerous<br />

chemical reactions.<br />

• Dalton’s atomic <strong>the</strong>ory easily explained<br />

conservation <strong>of</strong> mass in a reaction as <strong>the</strong><br />

result <strong>of</strong> <strong>the</strong> combination, separation, or<br />

rearrangement <strong>of</strong> atoms.


Greek Philosophers (cont.)


Section 4.1 Assessment<br />

Who was <strong>the</strong> first person to propose <strong>the</strong><br />

idea that matter was not infinitely<br />

divisible?<br />

A. Aristotle<br />

B. Plato<br />

C. Dalton<br />

D. Democritus<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Section 4.1 Assessment<br />

Dalton’s <strong>the</strong>ory also conveniently<br />

explained what?<br />

A. <strong>the</strong> electron<br />

B. <strong>the</strong> nucleus<br />

C. law <strong>of</strong> conservation <strong>of</strong> mass<br />

D. law <strong>of</strong> Democritus<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Section 4.2 Defining <strong>the</strong> <strong>Atom</strong><br />

• Define atom.<br />

• Distinguish between <strong>the</strong> subatomic particles in<br />

terms <strong>of</strong> relative charge and mass.<br />

• Describe <strong>the</strong> structure <strong>of</strong> <strong>the</strong> atom, including <strong>the</strong><br />

locations <strong>of</strong> <strong>the</strong> subatomic particles.<br />

model: a visual, verbal, and/or ma<strong>the</strong>matical<br />

explanation <strong>of</strong> data collected from many<br />

experiments


Section 4.2 Defining <strong>the</strong> <strong>Atom</strong> (cont.)<br />

atom<br />

cathode ray<br />

electron<br />

nucleus<br />

proton<br />

neutron<br />

An atom is made <strong>of</strong> a nucleus containing<br />

protons and neutrons; electrons move<br />

around <strong>the</strong> nucleus.


<strong>The</strong> <strong>Atom</strong><br />

• <strong>The</strong> smallest particle <strong>of</strong> an element that<br />

retains <strong>the</strong> properties <strong>of</strong> <strong>the</strong> element is<br />

called an atom.<br />

• An instrument called <strong>the</strong> scanning tunneling<br />

microscope (STM) allows individual atoms to<br />

be seen.


<strong>The</strong> Electron<br />

• When an electric charge is applied, a ray <strong>of</strong><br />

radiation travels from <strong>the</strong> cathode to <strong>the</strong><br />

anode, called a cathode ray.<br />

• Cathode rays are a stream <strong>of</strong> particles<br />

carrying a negative charge.<br />

• <strong>The</strong> particles carrying a negative charge are<br />

known as electrons.


<strong>The</strong> Electron (cont.)<br />

• This figure shows a typical cathode ray<br />

tube.


<strong>The</strong> Electron (cont.)<br />

• J.J. Thomson measured <strong>the</strong> effects <strong>of</strong> both<br />

magnetic and electric fields on <strong>the</strong> cathode<br />

ray to determine <strong>the</strong> charge-to-mass ratio<br />

<strong>of</strong> a charged particle, <strong>the</strong>n compared it to<br />

known values.<br />

• <strong>The</strong> mass <strong>of</strong> <strong>the</strong> charged particle was much<br />

less than a hydrogen atom, <strong>the</strong>n <strong>the</strong> lightest<br />

known atom.<br />

• Thomson received <strong>the</strong> Nobel Prize in 1906<br />

for identifying <strong>the</strong> first subatomic particle—<strong>the</strong><br />

electron


<strong>The</strong> Electron (cont.)<br />

• In <strong>the</strong> early 1910s, Robert Millikan used <strong>the</strong><br />

oil-drop apparatus shown below to<br />

determine <strong>the</strong> charge <strong>of</strong> an electron.


<strong>The</strong> Electron (cont.)<br />

• Charges change in discrete amounts—<br />

1.602 10 –19 coulombs, <strong>the</strong> charge <strong>of</strong> one<br />

electron (now equated to a single unit, 1–).<br />

• With <strong>the</strong> electron’s charge and charge-tomass<br />

ratio known, Millikan calculated <strong>the</strong><br />

mass <strong>of</strong> a single electron.<br />

<strong>the</strong> mass <strong>of</strong><br />

a hydrogen<br />

atom


<strong>The</strong> Electron (cont.)<br />

• Matter is neutral.<br />

• J.J. Thomson's plum pudding model <strong>of</strong> <strong>the</strong><br />

atom states that <strong>the</strong> atom is a uniform,<br />

positively changed sphere containing<br />

electrons.


<strong>The</strong> Nucleus<br />

• In 1911, Ernest Ru<strong>the</strong>rford studied how<br />

positively charged alpha particles<br />

interacted with solid matter.<br />

• By aiming <strong>the</strong> particles at<br />

a thin sheet <strong>of</strong> gold foil,<br />

Ru<strong>the</strong>rford expected <strong>the</strong><br />

paths <strong>of</strong> <strong>the</strong> alpha<br />

particles to be only<br />

slightly altered by a<br />

collision with an electron.


<strong>The</strong> Nucleus (cont.)<br />

• Although most <strong>of</strong> <strong>the</strong> alpha particles went<br />

through <strong>the</strong> gold foil, a few <strong>of</strong> <strong>the</strong>m<br />

bounced back, some at large angles.


<strong>The</strong> Nucleus (cont.)<br />

• Ru<strong>the</strong>rford concluded that atoms are<br />

mostly empty space.<br />

• Almost all <strong>of</strong> <strong>the</strong> atom's positive charge and<br />

almost all <strong>of</strong> its mass is contained in a dense<br />

region in <strong>the</strong> center <strong>of</strong> <strong>the</strong> atom called <strong>the</strong><br />

nucleus.<br />

• Electrons are held within <strong>the</strong> atom by <strong>the</strong>ir<br />

attraction to <strong>the</strong> positively charged nucleus.


<strong>The</strong> Nucleus (cont.)<br />

• <strong>The</strong> repulsive force between <strong>the</strong> positively<br />

charged nucleus and positive alpha<br />

particles caused <strong>the</strong> deflections.


<strong>The</strong> Nucleus (cont.)<br />

• Ru<strong>the</strong>rford refined <strong>the</strong> model to include<br />

positively charged particles in <strong>the</strong> nucleus<br />

called protons.<br />

• James Chadwick received <strong>the</strong> Nobel Prize in<br />

1935 for discovering <strong>the</strong> existence <strong>of</strong><br />

neutrons, neutral particles in <strong>the</strong> nucleus<br />

which accounts for <strong>the</strong> remainder <strong>of</strong> an<br />

atom’s mass.


<strong>The</strong> Nucleus (cont.)<br />

• All atoms are made <strong>of</strong> three<br />

fundamental subatomic<br />

particles: <strong>the</strong> electron, <strong>the</strong><br />

proton, and <strong>the</strong> neutron.<br />

• <strong>Atom</strong>s are spherically<br />

shaped.<br />

• <strong>Atom</strong>s are mostly empty<br />

space, and electrons travel<br />

around <strong>the</strong> nucleus held by<br />

an attraction to <strong>the</strong> positively<br />

charged nucleus.


<strong>The</strong> Nucleus (cont.)<br />

• Scientists have determined that protons<br />

and neutrons are composed <strong>of</strong> subatomic<br />

particles called quarks.


<strong>The</strong> Nucleus (cont.)<br />

• Chemical behavior can be explained by<br />

considering only an atom's electrons.


Section 4.2 Assessment<br />

<strong>Atom</strong>s are mostly ____.<br />

A. positive<br />

B. negative<br />

C. solid spheres<br />

D. empty space<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Section 4.2 Assessment<br />

What are <strong>the</strong> two fundamental subatomic<br />

particles found in <strong>the</strong> nucleus?<br />

A. proton and electron<br />

B. proton and neutron<br />

C. neutron and electron<br />

D. neutron and positron<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Section 4.3 How <strong>Atom</strong>s Differ<br />

• Explain <strong>the</strong> role <strong>of</strong> atomic number in determining <strong>the</strong><br />

identity <strong>of</strong> an atom.<br />

• Define an isotope.<br />

• Explain why atomic masses are not whole numbers.<br />

• Calculate <strong>the</strong> number <strong>of</strong> electrons, protons, and<br />

neutrons in an atom given its mass number and<br />

atomic number.


Section 4.3 How <strong>Atom</strong>s Differ (cont.)<br />

periodic table: a chart that organizes all known<br />

elements into a grid <strong>of</strong> horizontal rows (periods)<br />

and vertical columns (groups or families) arranged<br />

by increasing atomic number<br />

atomic number<br />

isotopes<br />

mass number<br />

atomic mass unit (amu)<br />

atomic mass<br />

<strong>The</strong> number <strong>of</strong> protons and <strong>the</strong> mass<br />

number define <strong>the</strong> type <strong>of</strong> atom.


<strong>Atom</strong>ic Number<br />

• Each element contains a unique positive<br />

charge in <strong>the</strong>ir nucleus.<br />

• <strong>The</strong> number <strong>of</strong> protons in <strong>the</strong> nucleus <strong>of</strong> an<br />

atom identifies <strong>the</strong> element and is known as<br />

<strong>the</strong> element’s atomic number.


Isotopes and Mass Number<br />

• All atoms <strong>of</strong> a particular element have <strong>the</strong><br />

same number <strong>of</strong> protons and electrons but<br />

<strong>the</strong> number <strong>of</strong> neutrons in <strong>the</strong> nucleus can<br />

differ.<br />

• <strong>Atom</strong>s with <strong>the</strong> same number <strong>of</strong> protons but<br />

different numbers <strong>of</strong> neutrons are called<br />

isotopes.


Isotopes and Mass Number (cont.)<br />

• <strong>The</strong> relative abundance <strong>of</strong> each isotope is<br />

usually constant.<br />

• Isotopes containing more neutrons have a<br />

greater mass.<br />

• Isotopes have <strong>the</strong> same chemical behavior.<br />

• <strong>The</strong> mass number is <strong>the</strong> sum <strong>of</strong> <strong>the</strong> protons<br />

and neutrons in <strong>the</strong> nucleus.


Isotopes and Mass Number (cont.)


Mass <strong>of</strong> <strong>Atom</strong>s<br />

• One atomic mass unit (amu) is defined as<br />

1/12 th <strong>the</strong> mass <strong>of</strong> a carbon-12 atom.<br />

• One amu is nearly, but not exactly, equal to<br />

one proton and one neutron.


Mass <strong>of</strong> <strong>Atom</strong>s (cont.)<br />

• <strong>The</strong> atomic mass <strong>of</strong> an element is <strong>the</strong><br />

weighted average mass <strong>of</strong> <strong>the</strong> isotopes <strong>of</strong><br />

that element.


Section 4.3 Assessment<br />

An unknown element has 19 protons, 19<br />

electrons, and 3 isotopes with 20, 21 and<br />

22 neutrons. What is <strong>the</strong> element’s atomic<br />

number?<br />

A. 38<br />

B. 40<br />

C. 19<br />

D. unable to determine<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Section 4.3 Assessment<br />

Elements with <strong>the</strong> same number <strong>of</strong><br />

protons and differing numbers <strong>of</strong><br />

neutrons are known as what?<br />

A. isotopes<br />

B. radioactive<br />

C. abundant<br />

D. ions<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Section 4.4 Unstable Nuclei and<br />

Radioactive Decay<br />

• Explain <strong>the</strong> relationship between unstable nuclei and<br />

radioactive decay.<br />

• Characterize alpha, beta, and gamma radiation in<br />

terms <strong>of</strong> mass and charge.<br />

element: a pure substance that cannot be broken<br />

down into simpler substances by physical or chemical<br />

means


Section 4.4 Unstable Nuclei and<br />

Radioactive Decay (cont.)<br />

radioactivity<br />

radiation<br />

nuclear reaction<br />

radioactive decay<br />

alpha radiation<br />

alpha particle<br />

nuclear equation<br />

beta radiation<br />

beta particle<br />

gamma rays<br />

Unstable atoms emit radiation to gain<br />

stability.


Radioactivity<br />

• Nuclear reactions can change one element<br />

into ano<strong>the</strong>r element.<br />

• In <strong>the</strong> late 1890s, scientists noticed some<br />

substances spontaneously emitted radiation,<br />

a process <strong>the</strong>y called radioactivity.<br />

• <strong>The</strong> rays and particles emitted are called<br />

radiation.<br />

• A reaction that involves a change in an atom's<br />

nucleus is called a nuclear reaction.


Radioactive Decay<br />

• Unstable nuclei lose energy by emitting<br />

radiation in a spontaneous process called<br />

radioactive decay.<br />

• Unstable radioactive elements undergo<br />

radioactive decay thus forming stable<br />

nonradioactive elements.


Radioactive Decay (cont.)<br />

• Alpha radiation is made up <strong>of</strong> positively<br />

charged particles called alpha particles.<br />

• Each alpha particle contains two protons and<br />

two neutrons and has a 2 + charge.


Radioactive Decay (cont.)<br />

• <strong>The</strong> figure shown below is a nuclear<br />

equation showing <strong>the</strong> radioactive decay <strong>of</strong><br />

radium-226 to radon-222.<br />

• <strong>The</strong> mass is conserved in nuclear equations.


Radioactive Decay (cont.)<br />

• Beta radiation is radiation that has a<br />

negative charge and emits beta particles.<br />

• Each beta particle is an electron with a 1–<br />

charge.


Radioactive Decay (cont.)


Radioactive Decay (cont.)<br />

• Gamma rays are high-energy radiation<br />

with no mass and are neutral.<br />

• Gamma rays account for most <strong>of</strong> <strong>the</strong> energy<br />

lost during radioactive decay.


Radioactive Decay (cont.)<br />

• <strong>Atom</strong>s that contain too many or two few<br />

neutrons are unstable and lose energy<br />

through radioactive decay to form a stable<br />

nucleus.<br />

• Few exist in nature—most have already<br />

decayed to stable forms.


Section 4.4 Assessment<br />

A reaction that changes one element into<br />

ano<strong>the</strong>r is called what?<br />

A. chemical reaction<br />

B. beta radiation<br />

C. nuclear reaction<br />

D. physical reaction<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Section 4.4 Assessment<br />

Why are radioactive elements rare in<br />

nature?<br />

A. <strong>The</strong>y do no occur on Earth.<br />

B. Most have already decayed to a<br />

stable form.<br />

C. <strong>The</strong>y take a long time to form.<br />

D. <strong>The</strong>y are too hard to detect.<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Chemistry Online<br />

Study Guide<br />

<strong>Chapter</strong> Assessment<br />

Standardized Test Practice<br />

Image Bank<br />

Concepts in Motion


Key Concepts<br />

Section 4.1 Early Ideas About Matter<br />

• Democritus was <strong>the</strong> first person to propose <strong>the</strong><br />

existence <strong>of</strong> atoms.<br />

• According to Democritus, atoms are solid,<br />

homogeneous, and indivisible.<br />

• Aristotle did not believe in <strong>the</strong> existence <strong>of</strong> atoms.<br />

• John Dalton’s atomic <strong>the</strong>ory is based on numerous<br />

scientific experiments.


Key Concepts<br />

Section 4.2 Defining <strong>the</strong> <strong>Atom</strong><br />

• An atom is <strong>the</strong> smallest particle <strong>of</strong> an element that<br />

maintains <strong>the</strong> properties <strong>of</strong> that element.<br />

• Electrons have a 1– charge, protons have a 1+ charge,<br />

and neutrons have no charge.<br />

• An atom consists mostly <strong>of</strong> empty space surrounding<br />

<strong>the</strong> nucleus.


Key Concepts<br />

Section 4.3 How <strong>Atom</strong>s Differ<br />

• <strong>The</strong> atomic number <strong>of</strong> an atom is given by its<br />

number <strong>of</strong> protons. <strong>The</strong> mass number <strong>of</strong> an atom is<br />

<strong>the</strong> sum <strong>of</strong> its neutrons and protons.<br />

atomic number = number <strong>of</strong> protons = number <strong>of</strong> electrons<br />

mass number = atomic number + number <strong>of</strong> neutrons<br />

• <strong>Atom</strong>s <strong>of</strong> <strong>the</strong> same element with different numbers <strong>of</strong><br />

neutrons are called isotopes.<br />

• <strong>The</strong> atomic mass <strong>of</strong> an element is a weighted average <strong>of</strong><br />

<strong>the</strong> masses <strong>of</strong> all <strong>of</strong> its naturally occurring isotopes.


Key Concepts<br />

Section 4.4 Unstable Nuclei and<br />

Radioactive Decay<br />

• Chemical reactions involve changes in <strong>the</strong> electrons<br />

surrounding an atom. Nuclear reactions involve<br />

changes in <strong>the</strong> nucleus <strong>of</strong> an atom.<br />

• <strong>The</strong>re are three types <strong>of</strong> radiation: alpha (charge <strong>of</strong> 2+),<br />

beta (charge <strong>of</strong> 1–), and gamma (no charge).<br />

• <strong>The</strong> neutron-to-proton ratio <strong>of</strong> an atom’s nucleus<br />

determines its stability.


Whose work led to <strong>the</strong> modern atomic<br />

<strong>the</strong>ory?<br />

A. Dalton<br />

B. Ru<strong>the</strong>rford<br />

C. Einstein<br />

D. Aristotle<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Which particle is not found in <strong>the</strong> nucleus<br />

<strong>of</strong> an atom?<br />

A. neutron<br />

B. proton<br />

C. gamma ray<br />

D. electron<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Two isotopes <strong>of</strong> an unknown element<br />

have <strong>the</strong> same number <strong>of</strong>:<br />

A. protons<br />

B. neutrons<br />

C. electrons<br />

D. both A and C<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Lithium has an atomic mass <strong>of</strong> 6.941 and<br />

two isotopes, one with 6 neutrons and one<br />

with 7 neutrons. Which isotope is more<br />

abundant?<br />

A. 6 Li<br />

B. 7 Li<br />

C. Both isotopes occur equally.<br />

D. unable to determine<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


What happens when an element emits<br />

radioactive particles?<br />

A. It gains energy.<br />

B. It gains neutrons.<br />

C. It loses stability.<br />

D. It loses energy.<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


What is <strong>the</strong> smallest particle <strong>of</strong> an element<br />

that still retains <strong>the</strong> properties <strong>of</strong> that<br />

element?<br />

A. proton<br />

B. atom<br />

C. electron<br />

D. neutron<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


How many neutrons, protons, and<br />

electrons does 124 54Xe have?<br />

A. 124 neutrons, 54 protons, 54 electrons<br />

B. 70 neutrons, 54 protons, 54 electrons<br />

C. 124 neutrons, 70 protons, 54 electrons<br />

D. 70 neutrons, 70 protons, 54 electrons<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


<strong>The</strong> primary factor in determining an<br />

atom's stability is its ratio <strong>of</strong> neutrons<br />

to ____.<br />

A. protons<br />

B. electrons<br />

C. alpha particles<br />

D. isotopes<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


What is <strong>the</strong> densest region <strong>of</strong> an atom?<br />

A. electron cloud<br />

B. nucleus<br />

C. isotopes<br />

D. atomic mass<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Why are electrons attracted to <strong>the</strong> cathode<br />

in a cathode ray tube?<br />

A. <strong>The</strong> cathode is more stable.<br />

B. <strong>The</strong> cathode has a positive charge.<br />

C. <strong>The</strong> cathode has a negative charge.<br />

D. <strong>The</strong> cathode has no charge.<br />

A<br />

B<br />

A. A<br />

B. B<br />

C. C<br />

0% 0% 0% 0%<br />

D. D<br />

C<br />

D


Click on an image to enlarge.


Table 4.3 Properties <strong>of</strong> Subatomic Particles<br />

Figure 4.12 Ru<strong>the</strong>rford's Experiment<br />

Figure 4.14 Features <strong>of</strong> an <strong>Atom</strong><br />

Figure 4.21 Types <strong>of</strong> Radiation


Click any <strong>of</strong> <strong>the</strong> background top tabs<br />

to display <strong>the</strong> respective folder.<br />

Within <strong>the</strong> <strong>Chapter</strong> Outline, clicking a section<br />

tab on <strong>the</strong> right side <strong>of</strong> <strong>the</strong> screen will bring you<br />

to <strong>the</strong> first slide in each respective section.<br />

Simple navigation buttons will allow you to<br />

progress to <strong>the</strong> next slide or <strong>the</strong> previous slide.<br />

<strong>The</strong> <strong>Chapter</strong> Resources Menu will allow you to<br />

access chapter specific resources from <strong>the</strong> <strong>Chapter</strong><br />

Menu or any <strong>Chapter</strong> Outline slide. From within any<br />

feature, click <strong>the</strong> Resources tab to return to this slide.<br />

<strong>The</strong> ―Return‖ button will allow you to return to <strong>the</strong><br />

slide that you were viewing when you clicked ei<strong>the</strong>r<br />

<strong>the</strong> Resources or Help tab.<br />

To exit <strong>the</strong> presentation, click <strong>the</strong> Exit button on <strong>the</strong> <strong>Chapter</strong> Menu slide or hit<br />

Escape [Esc] on your keyboards while viewing any <strong>Chapter</strong> Outline slide.


This slide is intentionally blank.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!