19.11.2014 Views

Description of Natural Circulation Systems in the SMART - UxC

Description of Natural Circulation Systems in the SMART - UxC

Description of Natural Circulation Systems in the SMART - UxC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Description</strong> <strong>of</strong> <strong>Natural</strong> <strong>Circulation</strong> <strong>Systems</strong><br />

<strong>in</strong> <strong>the</strong> <strong>SMART</strong> Nuclear Power Plant Design<br />

Young-Jong Chung*<br />

Korea Atomic Energy Research Institute


CONTENTS<br />

Introduction<br />

<strong>Description</strong> <strong>of</strong> Primary Coolant System<br />

<strong>Description</strong> <strong>of</strong> Passive Residual Heat Removal System<br />

<strong>Description</strong> <strong>of</strong> Emergency Cooldown Tank<br />

Conclusions<br />

KAERI 2


INTRODUCTION – <strong>SMART</strong> Plant<br />

<strong>SMART</strong> DESIGN<br />

Small sized <strong>in</strong>tegral type Pressurized Water Reactor<br />

Elim<strong>in</strong>ation <strong>of</strong> <strong>the</strong> possibility <strong>of</strong> LBLOCA<br />

Self controlled pressurizer by a non-condensable gas<br />

Low power density and Boron free core<br />

Passive system for <strong>the</strong> decay heat removal<br />

Simplification <strong>of</strong> system/components<br />

MCP<br />

CEDM<br />

Annular Cover<br />

Pressurizer<br />

Steam Generator<br />

CHARACTERISTICS<br />

Enhance safety compar<strong>in</strong>g with exist<strong>in</strong>g PWR<br />

Shorten construction period<br />

Reduce liquid radioactive wastes<br />

Reactor Vessel<br />

Core<br />

Side Screen<br />

Displacer<br />

KAERI 3


INTRODUCTION – <strong>SMART</strong> Plant<br />

<strong>SMART</strong> Plant<br />

Multi-purposed plant; sea water desal<strong>in</strong>ation and power generation<br />

Designed to supply 40,000 ton <strong>of</strong> water and 90 MW <strong>of</strong> electricity<br />

Major components<br />

• Vessel :Height-10.6m, Outer diameter-4.6m<br />

• 12 SG cassettes, 49 CEDMs, 4 MCPs<br />

• 4 <strong>in</strong>dependent tra<strong>in</strong> <strong>of</strong> PRHRS<br />

Nom<strong>in</strong>al operation conditions<br />

• Core power : 330 MWt<br />

• Primary pressure : 15 MPa<br />

• Primary mass flow : 1540 kg/s<br />

• Secondary mass flow : 152.7 kg/s<br />

• SG <strong>in</strong>/out liquid Temp : 310, 270 o C<br />

• L<strong>in</strong>ear heat gen. : 12.0 kW/m (commercial: 17 kW/m)<br />

• Heat flux : 394.1 kw/m 2 (commercial: 567 kw/m 2 )<br />

KAERI 4


INTRODUCTION – <strong>SMART</strong> Plant<br />

Core<br />

17x17 rectangular arrays <strong>of</strong> Korea Optimized Fuel Assembly<br />

Soluble boron free operation with large negative MTC<br />

Long cycle operation with a s<strong>in</strong>gle batch reload scheme<br />

Steam Generator<br />

12 steam generator cassettes located between Rv and barrel<br />

Primary coolant flows <strong>the</strong> shell side and secondary fluid flows tube side<br />

Reduce <strong>the</strong> possibility <strong>of</strong> <strong>the</strong> SGTR accident<br />

Pressurizer<br />

Self controlled <strong>in</strong>-vessel pressurizer located <strong>in</strong> <strong>the</strong> upper space <strong>of</strong> Rv<br />

Annular cavity, <strong>in</strong>termediate cavity, and end cavity<br />

Control <strong>the</strong> pressure by a partial pressure <strong>of</strong> <strong>the</strong> non-condensable gas<br />

Elim<strong>in</strong>ate <strong>the</strong> active system such as spray and heater<br />

KAERI 5


INTRODUCTION – <strong>SMART</strong>-P Plant<br />

Makeup System(x2)<br />

Emergency<br />

Boron<br />

Injection<br />

Tank<br />

Makeup<br />

Tank<br />

ECCS(x2)<br />

PRHRS(x4)<br />

ECT<br />

CT<br />

Makeup<br />

Pump<br />

ECC Tank<br />

Gas Cyl<strong>in</strong>der<br />

PSV<br />

V1<br />

V2<br />

MSIV<br />

Steam L<strong>in</strong>e<br />

Purification<br />

System<br />

Chemical<br />

Addition Tank<br />

PZR<br />

MCP S/G<br />

MFIV<br />

Feedwater<br />

L<strong>in</strong>e<br />

CORE<br />

PZR<br />

MCP<br />

(x4)<br />

CEDM<br />

(x49)<br />

IST<br />

Sampl<strong>in</strong>g System<br />

Purification Pump<br />

Reactor Coolant System<br />

Component<br />

Cool<strong>in</strong>g System<br />

KAERI 6


INTRODUCTION – <strong>SMART</strong> Plant<br />

<strong>Natural</strong> circulation circuit <strong>in</strong> <strong>the</strong> <strong>SMART</strong> Plant<br />

Three natural circulation circuit are <strong>in</strong>volved <strong>in</strong> <strong>the</strong> PRHRS operation<br />

• Reactor coolant system<br />

• Passive residual heat removal system<br />

• Emergency cooldown tank<br />

Passive residual heat removal system is designed to remove <strong>the</strong> decay heat<br />

• The system can remove <strong>the</strong> decay heat for 72 hours without operator action<br />

Emergency cooldown tank is a f<strong>in</strong>al heat s<strong>in</strong>k for <strong>the</strong> decay heat<br />

• The heat exchanger is submerged <strong>the</strong> water <strong>in</strong> <strong>the</strong> ECT<br />

KAERI 7


<strong>Natural</strong> <strong>Circulation</strong> <strong>of</strong> <strong>the</strong> <strong>SMART</strong><br />

<strong>Description</strong> <strong>of</strong> <strong>the</strong> reactor coolant system<br />

System<br />

• Consist <strong>of</strong> core, upper guide structure, MCP, SG primary<br />

side, downcomer<br />

Initiation <strong>of</strong> natural circulation <strong>in</strong> <strong>the</strong> RCS<br />

• MCP trip signal is <strong>in</strong>itiated by <strong>the</strong> LOOP signal or<br />

operator action manually<br />

Characteristics<br />

• <strong>the</strong> <strong>SMART</strong> can operate 25% <strong>of</strong> nom<strong>in</strong>al power by<br />

natural circulation operation mode<br />

• <strong>Natural</strong> circulation is established by hydraulic head and<br />

density difference between <strong>the</strong> core and <strong>the</strong> SG<br />

• Heat generated <strong>in</strong> <strong>the</strong> core is transported to <strong>the</strong> SG by<br />

natural circulation flow<br />

KAERI 8


<strong>Natural</strong> <strong>Circulation</strong> <strong>of</strong> <strong>the</strong> <strong>SMART</strong><br />

<strong>Description</strong> <strong>of</strong> <strong>the</strong> passive residual heat removal<br />

system<br />

Emergency<br />

Cooldown Tank<br />

System<br />

• Consist <strong>of</strong> SG secondary side, ma<strong>in</strong> steam pipe, PRHR<br />

steam l<strong>in</strong>e, Hx, PRHR liquid l<strong>in</strong>e, feedwater pipe and CT<br />

MSIV<br />

Steam<br />

discharge<br />

Initiation <strong>of</strong> natural circulation <strong>in</strong> <strong>the</strong> PRHRS<br />

• PRHRS actuation signal is <strong>in</strong>itiated by low FW flow, low<br />

SG pressure, high SG pressure, and manual<br />

Compensat<strong>in</strong>g<br />

Tank<br />

MFIV<br />

Feedwater<br />

supply<br />

SG<br />

Helical<br />

Tube<br />

Characteristics<br />

• <strong>Natural</strong> circulation is established by hydraulic head and<br />

density difference between <strong>the</strong> SG and <strong>the</strong> Hx<br />

• Heat transferred from <strong>the</strong> SG primary side is transported<br />

to <strong>the</strong> ECT by natural circulation flow<br />

• The ECT is located high enough relative to <strong>the</strong> SG<br />

• The CT is <strong>in</strong>stalled to make-up <strong>the</strong> <strong>in</strong>ventory <strong>in</strong> <strong>the</strong><br />

PRHRS at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> <strong>the</strong> transient<br />

KAERI 9


<strong>Natural</strong> <strong>Circulation</strong> <strong>of</strong> <strong>the</strong> <strong>SMART</strong><br />

<strong>Description</strong> <strong>of</strong> <strong>the</strong> Emergency cooldown tank<br />

System<br />

• Consist <strong>of</strong> <strong>the</strong> Hx shell side and fluid <strong>in</strong> <strong>the</strong> ECT<br />

Initiation <strong>of</strong> natural circulation <strong>in</strong> <strong>the</strong> ECT<br />

• The fluid <strong>in</strong> <strong>the</strong> ECT is circulated automatically<br />

when <strong>the</strong> heat transferred from <strong>the</strong> Hx<br />

Characteristics<br />

• The ECT is a big open tank filled with a water<br />

• The ECT is ultimate heat s<strong>in</strong>k<br />

• The ETC can operate at least 72 hours without<br />

any operator action when <strong>the</strong> reactor trips<br />

• <strong>Natural</strong> circulation loop is established locally by<br />

a density difference <strong>in</strong> <strong>the</strong> water column<br />

• Around top <strong>of</strong> <strong>the</strong> Hx is occurred a local boil<strong>in</strong>g<br />

KAERI 10


Conclusions<br />

The PRHRS provides an ultimate heat s<strong>in</strong>k when <strong>of</strong>f-site power is unavailable<br />

The reliability <strong>of</strong> <strong>the</strong> PRHRS is exam<strong>in</strong>ed at KAERI through VISTA facility<br />

The VISTA facility is an <strong>in</strong>tegral test facility simulat<strong>in</strong>g <strong>the</strong> reference plant<br />

The result <strong>of</strong> <strong>the</strong> VISTA experiment will present for <strong>the</strong> natural circulation flow<br />

KAERI 11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!