20.11.2014 Views

Models in Spintronics - The European School on Magnetism

Models in Spintronics - The European School on Magnetism

Models in Spintronics - The European School on Magnetism

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics (Part I)<br />

OUTLINE :<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent transport <str<strong>on</strong>g>in</str<strong>on</strong>g> metallic magnetic multilayers<br />

-Introducti<strong>on</strong> to sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-electr<strong>on</strong>ics<br />

-Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic metal<br />

-Current-<str<strong>on</strong>g>in</str<strong>on</strong>g>-plane Giant Magnetoresistance<br />

-Modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g transport <str<strong>on</strong>g>in</str<strong>on</strong>g> CIP sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves<br />

-Current-perpendicular-to-plane Giant Magnetoresistance<br />

-Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> accumulati<strong>on</strong>, sp<str<strong>on</strong>g>in</str<strong>on</strong>g> current, 3D generalizati<strong>on</strong>.<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Birth of sp<str<strong>on</strong>g>in</str<strong>on</strong>g> electr<strong>on</strong>ics : Giant magnetoresistance (1988)<br />

Fe/Cr multilayers<br />

Fert et al, PRL (1988), Nobel Prize 2007<br />

Two limit geometries of measurement:<br />

I<br />

~ 80%<br />

V<br />

Current-<str<strong>on</strong>g>in</str<strong>on</strong>g>-plane<br />

I<br />

I<br />

V<br />

Magnetic field (kG)<br />

I<br />

I<br />

Current-perpendicular-to-plane<br />

Antiferromagnetically coupled multilayers<br />

GMR<br />

<br />

R<br />

AP<br />

<br />

R<br />

P<br />

R<br />

P<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Low field GMR: Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves<br />

FeMn 90Å<br />

NiFe 40Å<br />

Cu 22Å<br />

Antiferromagnetic<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>n<str<strong>on</strong>g>in</str<strong>on</strong>g>g layer<br />

Ferromagnetic<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>ned layer<br />

N<strong>on</strong> magnetic spacer<br />

M (10 -3 emu)<br />

1<br />

0<br />

-1<br />

4<br />

(a)<br />

(b)<br />

NiFe 70Å<br />

Ta 50Å<br />

Soft ferromagnetic layer<br />

Buffer layer<br />

R/R (%)<br />

3<br />

2<br />

1<br />

substrate<br />

IBM Almaden<br />

Ultrasensitive magnetic field sensors (MR heads)<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> eng<str<strong>on</strong>g>in</str<strong>on</strong>g>eer<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

R/R (%)<br />

0<br />

-200<br />

4<br />

3<br />

2<br />

1<br />

(c)<br />

0 200 400 600 800<br />

H(Oe)<br />

B.Dieny et al, Phys.Rev.B.(1991)+patent US5206590 (1991).<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara<br />

0<br />

-40<br />

-20<br />

0 20 40<br />

H(Oe)


Benefit of GMR <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic record<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

GMR sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valve heads<br />

from 1998 to 2004<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Two current model (Mott 1930) for transport <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic metals<br />

As l<strong>on</strong>g as sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-flip is negligible, current can be c<strong>on</strong>sidered as carried <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

parallel by two categories of electr<strong>on</strong>s: sp<str<strong>on</strong>g>in</str<strong>on</strong>g> and sp<str<strong>on</strong>g>in</str<strong>on</strong>g> (parallel and<br />

antiparallel to quantizati<strong>on</strong> axis)<br />

<br />

<br />

<br />

<br />

1<br />

<br />

<br />

<br />

1<br />

<br />

<br />

<br />

<br />

<br />

1<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Sources of sp<str<strong>on</strong>g>in</str<strong>on</strong>g> flip: magn<strong>on</strong>s and sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-orbit scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Negligible sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-flip often crude approximati<strong>on</strong> (sp<str<strong>on</strong>g>in</str<strong>on</strong>g> diffusi<strong>on</strong> length <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

NiFe~4.5nm, 30% sp<str<strong>on</strong>g>in</str<strong>on</strong>g> memory loss at Co/Cu <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces)<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> dependent transport <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic metals (1)<br />

Band structure of 3d transiti<strong>on</strong> metals<br />

In transiti<strong>on</strong> metals, partially filled bands which participate to c<strong>on</strong>ducti<strong>on</strong> are s and d bands<br />

N<strong>on</strong>-magnetic Cu : Magnetic Ni :<br />

E<br />

s <br />

(E)<br />

s <br />

(E)<br />

E<br />

s <br />

(E)<br />

s <br />

(E)<br />

D <br />

(E)<br />

D <br />

(E)<br />

D <br />

(E)<br />

D <br />

(E)<br />

E<br />

E<br />

D <br />

(E F<br />

) = D <br />

(E F<br />

)<br />

D <br />

(E F<br />

) D <br />

(E F<br />

)<br />

Most of transport properties are determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by DOS at Fermi energy<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent density of state at Fermi energy<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> dependent transport <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic metals (2)<br />

m*(d) >> m*(s)<br />

J mostly carried by s electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> transiti<strong>on</strong> metals<br />

Scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g of electr<strong>on</strong>s determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed by DOS at E F<br />

:<br />

E<br />

Fermi Golden rule :<br />

P <br />

iW<br />

f <br />

2<br />

D f ( E F<br />

)<br />

s <br />

(E)<br />

s <br />

(E)<br />

s <br />

s <br />

d <br />

D <br />

(E)<br />

D <br />

(E)<br />

s <br />

s <br />

d <br />

Most efficient scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g channel<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

magnetic transiti<strong>on</strong> metals<br />

Example:<br />

Co 10nm;<br />

<br />

Co<br />

1nm<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Potential experienced by c<strong>on</strong>ducti<strong>on</strong> electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic metallic multilayers<br />

Parallel magnetic c<strong>on</strong>figurati<strong>on</strong><br />

Antiparallel magnetic c<strong>on</strong>figurati<strong>on</strong><br />

(a)<br />

Co/Cu majority electr<strong>on</strong>s : parallel magnetic c<strong>on</strong>figurati<strong>on</strong><br />

Co Cu Co<br />

Cu<br />

(c)<br />

Co/Cu majority electr<strong>on</strong>s : antiparallel magnetic c<strong>on</strong>figurati<strong>on</strong><br />

Co/Cu m<str<strong>on</strong>g>in</str<strong>on</strong>g>ority electr<strong>on</strong>s : parallel magnetic c<strong>on</strong>figurati<strong>on</strong><br />

Co/Cu m<str<strong>on</strong>g>in</str<strong>on</strong>g>ority electr<strong>on</strong>s : antiparallel magnetic c<strong>on</strong>figurati<strong>on</strong><br />

(b)<br />

U(x,z)<br />

(d)<br />

x<br />

•Lattice potential modulati<strong>on</strong> due to difference between Fermi energy and<br />

bottom of c<strong>on</strong>ducti<strong>on</strong> band (reflecti<strong>on</strong>, refracti<strong>on</strong>)<br />

•Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <strong>on</strong> impurities, <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces or gra<str<strong>on</strong>g>in</str<strong>on</strong>g> boundaries<br />

(Dom<str<strong>on</strong>g>in</str<strong>on</strong>g>ant effect <str<strong>on</strong>g>in</str<strong>on</strong>g> GMR)<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara<br />

z


Simple model of Giant Magnetoresistance<br />

Parallel c<strong>on</strong>fig<br />

Antiparallel c<strong>on</strong>fig<br />

Fe<br />

Cr Fe<br />

Fe Cr Fe<br />

<br />

ap<br />

<br />

<br />

<br />

<br />

<br />

<br />

2<br />

<br />

<br />

<br />

2<br />

<br />

1 <br />

1<br />

Equivalent resistances :<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

P<br />

<br />

<br />

2<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

AP<br />

<br />

<br />

<br />

<br />

2<br />

<br />

Key role of<br />

scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g c<strong>on</strong>trast <br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g current-<str<strong>on</strong>g>in</str<strong>on</strong>g>-plane transport (semi-classical Boltzman theory of GMR)<br />

Approach <str<strong>on</strong>g>in</str<strong>on</strong>g>itiated by Camley and Barnas, PRL, 63, 664 (1989)<br />

Gas of <str<strong>on</strong>g>in</str<strong>on</strong>g>dependent particles described by distributi<strong>on</strong> f(r, v, t), submitted<br />

to force field F (=-eE for electr<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> electrical field E).<br />

Time evoluti<strong>on</strong> of the distributi<strong>on</strong> described by Boltzman equati<strong>on</strong>:<br />

t+dt<br />

E<br />

<br />

<br />

<br />

df<br />

dt<br />

<br />

<br />

<br />

t<br />

F<br />

Equilibrium functi<strong>on</strong> c<strong>on</strong>served <str<strong>on</strong>g>in</str<strong>on</strong>g> a volume element drdv<br />

al<strong>on</strong>g a flow l<str<strong>on</strong>g>in</str<strong>on</strong>g>e.<br />

df df df <br />

In presence of scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g, 0<br />

dt dt dt <br />

f<br />

f<br />

f<br />

. vx<br />

. vy<br />

t<br />

x<br />

y<br />

f<br />

<br />

v.<br />

<br />

r<br />

f a.<br />

v<br />

f<br />

t<br />

f<br />

. vz<br />

z<br />

f<br />

<br />

v<br />

x<br />

. a<br />

x<br />

f<br />

<br />

v<br />

y<br />

F<br />

. a<br />

y<br />

f<br />

<br />

v<br />

scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

Balance between accelerati<strong>on</strong> due to force<br />

and relaxati<strong>on</strong> due to scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

with<br />

<br />

ma <br />

<br />

F<br />

z<br />

. a<br />

z<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


df<br />

dt<br />

f<br />

t<br />

df<br />

dt<br />

In stati<strong>on</strong>ary regime, 0<br />

<br />

<br />

<br />

F<br />

<br />

<br />

<br />

scatt<br />

f<br />

t<br />

In s<str<strong>on</strong>g>in</str<strong>on</strong>g>gle relaxati<strong>on</strong> time approximati<strong>on</strong> ()<br />

<br />

<br />

<br />

<br />

<br />

F <br />

v.<br />

<br />

r<br />

f . <br />

m<br />

<br />

<br />

<br />

df<br />

dt<br />

<br />

<br />

<br />

scatt<br />

v<br />

f<br />

<br />

<br />

<br />

f <br />

<br />

Where f 0 is the equilibrium distributi<strong>on</strong> (Fermi Dirac for electr<strong>on</strong>s).<br />

f<br />

0<br />

<br />

Boltzmann equati<strong>on</strong> for electr<strong>on</strong> gas <str<strong>on</strong>g>in</str<strong>on</strong>g> electrical field E:<br />

<br />

v.<br />

<br />

<br />

r<br />

f<br />

<br />

<br />

eE<br />

m<br />

<br />

. <br />

v<br />

f<br />

<br />

<br />

<br />

f <br />

<br />

f<br />

0<br />

<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


I<br />

x<br />

Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g current transport <str<strong>on</strong>g>in</str<strong>on</strong>g> bulk metals<br />

V<br />

E<br />

Spatially homogeneous transport<br />

I<br />

<br />

r f<br />

f<br />

<br />

v.<br />

<br />

<br />

r<br />

<br />

<br />

<br />

r<br />

, v f r<br />

, v<br />

g r<br />

, v <br />

0<br />

f<br />

0<br />

f<br />

0<br />

<br />

<br />

r,<br />

v<br />

<br />

<br />

eE<br />

<br />

m<br />

<br />

Fermi-Dirac<br />

1<br />

<br />

<br />

exp<br />

<br />

kBT<br />

<br />

. <br />

v<br />

f<br />

<br />

<br />

<br />

<br />

Perturbati<strong>on</strong><br />

due to electric field<br />

F<br />

<br />

<br />

1<br />

<br />

f <br />

<br />

f<br />

0<br />

<br />

g(<br />

v<br />

x<br />

)<br />

eE f<br />

m v<br />

x 0<br />

<br />

x<br />

k z<br />

In k-space, shift <str<strong>on</strong>g>in</str<strong>on</strong>g> Fermi surface by<br />

k<br />

eE x<br />

<br />

k y<br />

k<br />

k x<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g current transport <str<strong>on</strong>g>in</str<strong>on</strong>g> bulk metals (c<strong>on</strong>t’d)<br />

Current density:<br />

j<br />

j<br />

<br />

<br />

e<br />

<br />

v<br />

x<br />

g( v<br />

) d<br />

3<br />

v<br />

2<br />

ne E E<br />

<br />

1 E<br />

m <br />

2<br />

ne <br />

m<br />

Well-known expressi<strong>on</strong> of c<strong>on</strong>ductivity <str<strong>on</strong>g>in</str<strong>on</strong>g> Drude model<br />

n=density of c<strong>on</strong>ducti<strong>on</strong> electr<strong>on</strong>s<br />

n~1/atom <str<strong>on</strong>g>in</str<strong>on</strong>g> noble metals such as Cu, Ag, Au<br />

n~0.6/atom <str<strong>on</strong>g>in</str<strong>on</strong>g> metals such as Ni, Co, Fe<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Typical resistivity of sputtered metals<br />

Material<br />

Cu a<br />

Ag f<br />

Au g<br />

Pt 50<br />

Mn 50<br />

e<br />

Ni 80<br />

Cr 20<br />

e<br />

Ru c<br />

Measured<br />

resistivity<br />

4K/300K<br />

0.5-0.7.cm<br />

3-5<br />

1.cm<br />

7<br />

2.cm<br />

8<br />

160.cm<br />

180<br />

140.cm<br />

140<br />

9.5-11.cm<br />

14-20<br />

Material<br />

(ferro)<br />

Ni 80<br />

Fe 20<br />

a<br />

Ni 66<br />

Fe 13<br />

Co 2<br />

b<br />

1<br />

Co a,d<br />

Co 90<br />

Fe 10<br />

h<br />

Co 50<br />

Fe 50<br />

h<br />

Measured resistivity<br />

4K/300K<br />

10-15.cm<br />

22-25<br />

9-13.cm<br />

20-23<br />

4.1-6.45.cm<br />

12-16<br />

6-9.cm<br />

13-18<br />

7-10.cm<br />

15-20<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g>rmal variati<strong>on</strong> of resistivity due to ph<strong>on</strong><strong>on</strong> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g and magn<strong>on</strong> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g (<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

magnetic metals)<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


g<br />

z<br />

0<br />

z,<br />

v g z,<br />

v eE f<br />

v<br />

<br />

<br />

<br />

v F<br />

v<br />

General soluti<strong>on</strong> :<br />

Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g current transport <str<strong>on</strong>g>in</str<strong>on</strong>g> metallic th<str<strong>on</strong>g>in</str<strong>on</strong>g> films<br />

I<br />

<br />

f r, v f r,<br />

v g r,<br />

v<br />

0<br />

z<br />

<br />

V<br />

eE f f<br />

v.<br />

<br />

r<br />

f . v<br />

f <br />

I<br />

m<br />

<br />

E<br />

x<br />

Due to scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g at outer surfaces, the perturbati<strong>on</strong> g is no l<strong>on</strong>ger homogeneous: g(z)<br />

z<br />

<br />

mv<br />

z<br />

v<br />

x<br />

= elastic mean free path<br />

g<br />

<br />

<br />

f<br />

<br />

0<br />

z, v<br />

eE<br />

vx<br />

1<br />

A<br />

<br />

<br />

+(-) refer to electr<strong>on</strong>s travel<str<strong>on</strong>g>in</str<strong>on</strong>g>g towards z>0 (z


Boundary c<strong>on</strong>diti<strong>on</strong>s for a th<str<strong>on</strong>g>in</str<strong>on</strong>g> film :<br />

g <br />

<br />

<br />

z sup<br />

g <br />

z sup<br />

g<br />

<br />

z<br />

<br />

Rg <br />

sup <br />

z sup<br />

z sup<br />

z <str<strong>on</strong>g>in</str<strong>on</strong>g>f<br />

g <br />

g <br />

z <str<strong>on</strong>g>in</str<strong>on</strong>g>f<br />

z <str<strong>on</strong>g>in</str<strong>on</strong>g>f<br />

Proba R Proba 1-R<br />

g<br />

<br />

z<br />

Rg <br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>f <br />

z <str<strong>on</strong>g>in</str<strong>on</strong>g>f<br />

Proba of specular reflecti<strong>on</strong> R<br />

Proba of diffuse reflecti<strong>on</strong> 1-R<br />

Two boundary c<strong>on</strong>diti<strong>on</strong>s, two unknowns A+, A-, solvable problem<br />

Current density:<br />

j(<br />

z)<br />

<br />

1<br />

<br />

0<br />

<br />

<br />

<br />

j(z) e<br />

<br />

v<br />

x<br />

g<br />

t <br />

<br />

<br />

<br />

v<br />

z<br />

, z<br />

<br />

2<br />

1<br />

2 A exp<br />

A exp<br />

d<br />

t=layer thickness, = cos<str<strong>on</strong>g>in</str<strong>on</strong>g>e of electr<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g>cidence<br />

<br />

<br />

<br />

d<br />

3<br />

v<br />

t <br />

<br />

<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


G<br />

G<br />

G<br />

Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g current transport <str<strong>on</strong>g>in</str<strong>on</strong>g> metallic th<str<strong>on</strong>g>in</str<strong>on</strong>g> films (c<strong>on</strong>t’d)<br />

G 0<br />

G 1<br />

2<br />

ne t <br />

v m<br />

0<br />

<br />

F<br />

3<br />

1<br />

1<br />

<br />

4<br />

0<br />

t<br />

2<br />

d<br />

1<br />

<br />

<br />

thickness<br />

Same c<strong>on</strong>ductance as <str<strong>on</strong>g>in</str<strong>on</strong>g> bulk<br />

<br />

A<br />

<br />

<br />

t <br />

1<br />

exp<br />

<br />

A<br />

<br />

<br />

t <br />

1<br />

exp<br />

<br />

<br />

G 1<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s all f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite size effects.<br />

Characteristic length <str<strong>on</strong>g>in</str<strong>on</strong>g> current-<str<strong>on</strong>g>in</str<strong>on</strong>g>-plane transport=elastic mfp<br />

Fuchs-S<strong>on</strong>dheimer approximate expressi<strong>on</strong>s:<br />

j(z)<br />

<br />

1 3 <br />

for <br />

2<br />

<br />

ne 8t<br />

<br />

t<br />

Assum<str<strong>on</strong>g>in</str<strong>on</strong>g>g diffuse surface scatt<br />

<br />

mv F<br />

<br />

4mv F<br />

1 <br />

<br />

for <br />

2<br />

3ne<br />

tln<br />

/ t 0.423<br />

t<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


<str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics (Part I)<br />

OUTLINE :<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent transport <str<strong>on</strong>g>in</str<strong>on</strong>g> metallic magnetic multilayers<br />

-Introducti<strong>on</strong> to sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-electr<strong>on</strong>ics<br />

-Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic metal<br />

-Current-<str<strong>on</strong>g>in</str<strong>on</strong>g>-plane Giant Magnetoresistance<br />

-Modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g CIP Giant Magnetoresistance<br />

-Current-perpendicular-to-plane Giant Magnetoresistance<br />

-Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> accumulati<strong>on</strong>, sp<str<strong>on</strong>g>in</str<strong>on</strong>g> current, 3D generalizati<strong>on</strong>.<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Layer i+1<br />

Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g current <str<strong>on</strong>g>in</str<strong>on</strong>g> plane GMR <str<strong>on</strong>g>in</str<strong>on</strong>g> metallic multilayers<br />

V<br />

I<br />

I<br />

CIP<br />

Proba T i<br />

of<br />

transmissi<strong>on</strong><br />

Same as for th<str<strong>on</strong>g>in</str<strong>on</strong>g> films but separately<br />

c<strong>on</strong>sider<str<strong>on</strong>g>in</str<strong>on</strong>g>g sp<str<strong>on</strong>g>in</str<strong>on</strong>g> and sp<str<strong>on</strong>g>in</str<strong>on</strong>g> <br />

electr<strong>on</strong>s and solv<str<strong>on</strong>g>in</str<strong>on</strong>g>g the Boltzmann<br />

equati<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> each layer with<br />

appropriate boundary c<strong>on</strong>diti<strong>on</strong>s.<br />

•Bulk sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

described by sp<str<strong>on</strong>g>in</str<strong>on</strong>g> dependent mfp <br />

•Interfacial scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g described by sp<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

dependent R and T <br />

Interface i<br />

Layer i<br />

Proba R i<br />

of reflexi<strong>on</strong><br />

Proba 1-R i<br />

-T i<br />

of diffusi<strong>on</strong><br />

g<br />

g<br />

<br />

i1,<br />

<br />

Ti<br />

gi,<br />

<br />

Ri<br />

gi<br />

1,<br />

<br />

<br />

i, <br />

Ti<br />

gi<br />

1, <br />

Ri<br />

g<br />

i,<br />

<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


G<br />

Model<str<strong>on</strong>g>in</str<strong>on</strong>g>g current <str<strong>on</strong>g>in</str<strong>on</strong>g> plane GMR <str<strong>on</strong>g>in</str<strong>on</strong>g> metallic multilayers<br />

G 0<br />

G 1<br />

G<br />

n<br />

N N<br />

2 i i i<br />

0<br />

e ti<br />

/<br />

i1,<br />

vFmi<br />

i1,<br />

<br />

t<br />

<br />

<br />

i<br />

Same c<strong>on</strong>ductance as if all layers<br />

were c<strong>on</strong>nected <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel<br />

G<br />

1<br />

<br />

3<br />

4<br />

<br />

i<br />

<br />

i<br />

1<br />

<br />

,<br />

i 0<br />

<br />

d<br />

1<br />

<br />

2<br />

<br />

A<br />

<br />

<br />

<br />

i,<br />

<br />

t <br />

i<br />

1<br />

exp<br />

<br />

<br />

<br />

<br />

i<br />

<br />

<br />

A<br />

<br />

i,<br />

<br />

t <br />

i<br />

1<br />

exp<br />

<br />

<br />

<br />

<br />

i<br />

<br />

<br />

G 1<br />

c<strong>on</strong>ta<str<strong>on</strong>g>in</str<strong>on</strong>g>s all f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite size effects and is resp<strong>on</strong>sible for GIP GMR.<br />

To obta<str<strong>on</strong>g>in</str<strong>on</strong>g> the GMR, G 1<br />

is calculated <str<strong>on</strong>g>in</str<strong>on</strong>g> parallel and antiparallel c<strong>on</strong>figurati<strong>on</strong>s.<br />

<br />

<br />

In AP c<strong>on</strong>figurati<strong>on</strong>, , R ,T and<br />

, R ,T<br />

are <str<strong>on</strong>g>in</str<strong>on</strong>g>verted <str<strong>on</strong>g>in</str<strong>on</strong>g> every other layer.<br />

CIP GMR comes from sec<strong>on</strong>d order effect <str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>ductivity (<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>trast to<br />

CPP GMR)<br />

Characteristic lengths <str<strong>on</strong>g>in</str<strong>on</strong>g> CIP GMR are the elastic mean-free paths<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Influence of feromagnetic layer thickness <strong>on</strong> GMR <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves<br />

G ( -1 )<br />

G ( -1 )<br />

0 .3<br />

0.25<br />

0 .2<br />

0.15<br />

0 .1<br />

0.05<br />

0<br />

0.00 3<br />

0.00 2<br />

0.00 1<br />

0<br />

R=1<br />

p = 1<br />

R=1<br />

p = 1<br />

p = 0<br />

R=0<br />

p = 0<br />

R=0<br />

Example of calculated CIP curves<br />

For a NiFe t NiFe<br />

/Cu 2nm/NiFe t NiFe<br />

Sandwich.<br />

R=coeff of specular reflecti<strong>on</strong> at lateral edges<br />

<br />

<br />

T<br />

NiFe<br />

<br />

Cu<br />

7nm,<br />

<br />

12nm,<br />

NiFe / Cu<br />

<br />

T<br />

NiFe<br />

<br />

NiFe / Cu<br />

<br />

.8nm,<br />

0.9<br />

Absolute change of sheet c<strong>on</strong>ductance<br />

most <str<strong>on</strong>g>in</str<strong>on</strong>g>tr<str<strong>on</strong>g>in</str<strong>on</strong>g>sic measure of CIP GMR<br />

F/Cu25Å/NiFe50Å/FeMn100Å<br />

R/R p<br />

(%)<br />

10<br />

5<br />

p = 1<br />

R=1<br />

p = 0<br />

R=0<br />

0<br />

0 50 100 1 50 200 250 300<br />

t (nm) F (Å)<br />

B.Dieny<br />

JMMM (1994)<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Influence of nature of ferro materials <strong>on</strong> GMR <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves<br />

5<br />

5<br />

R/R (%)<br />

4<br />

3<br />

2<br />

R/R p<br />

(%)<br />

4<br />

3<br />

2<br />

NiFe<br />

Fe<br />

Co<br />

1<br />

1<br />

0<br />

0 10 20 30 40 50<br />

t F (nm)<br />

0<br />

0 10 20 30 40 50<br />

t F<br />

(nm)<br />

F tF/Cu 2.5nm/NiFe 5nm/FeMn 10nm,<br />

with F=Ni80Fe20, Co and Fe (Dieny, 1991).<br />

<br />

<br />

<br />

<br />

NiFe<br />

<br />

Co<br />

<br />

Fe<br />

<br />

7nm,<br />

<br />

<br />

9nm,<br />

<br />

Co<br />

NiFe<br />

<br />

4.5nm,<br />

<br />

0.9nm,<br />

T<br />

Fe<br />

F t F<br />

/Cu 2.5nm/NiFe5nm/FeMn 10nm<br />

0.7nm,<br />

T<br />

<br />

Co / Cu<br />

4.5nm,<br />

T<br />

<br />

NiFe / Cu<br />

<br />

Fe / Cu<br />

0.85, T<br />

0.95, T<br />

<br />

Co / Cu<br />

0.70, T<br />

<br />

Fe / Cu<br />

<br />

NiFe / Cu<br />

<br />

0.30,<br />

<br />

<br />

0.30.<br />

0.30,<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Influence of n<strong>on</strong>-magnetic spacer layer thickness <strong>on</strong> GMR <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves<br />

20<br />

NiFe 3nm/Cu t Cu<br />

/NiFe 3nm<br />

NiFe50Å/NM t NM<br />

/NiFe50Å/FeMn100Å<br />

R/R p<br />

(%)<br />

15<br />

10<br />

5<br />

p = 1<br />

p = 0<br />

0<br />

0 50 100 150<br />

t<br />

t (nm)<br />

CuF<br />

Semi-classical theory<br />

Experiments<br />

B.Dieny<br />

JMMM (1994)<br />

Two effects as t NM<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>creases:<br />

•Reduced number of electr<strong>on</strong>s travell<str<strong>on</strong>g>in</str<strong>on</strong>g>g from <strong>on</strong>e ferro layer to the other<br />

•Increas<str<strong>on</strong>g>in</str<strong>on</strong>g>g shunt<str<strong>on</strong>g>in</str<strong>on</strong>g>g of the current <str<strong>on</strong>g>in</str<strong>on</strong>g> the spacer layer<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Local current density and magnetic field due to current <str<strong>on</strong>g>in</str<strong>on</strong>g> a CIP sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valve<br />

<br />

j( z)<br />

<br />

,<br />

,<br />

i 0 <br />

i<br />

<br />

1<br />

2<br />

<br />

t <br />

<br />

t <br />

i<br />

i<br />

1<br />

2<br />

A <br />

i<br />

A <br />

, <br />

exp<br />

d<br />

<br />

i <br />

exp<br />

<br />

<br />

i<br />

<br />

Oersted field due to sense current<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g> a CIP sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves<br />

J<br />

B( z)<br />

0 j(<br />

z')<br />

dz'<br />

0<br />

z<br />

cst<br />

Oe field plays an important role <str<strong>on</strong>g>in</str<strong>on</strong>g> the bias of sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valve heads<br />

Local current density (u.a)<br />

=2.10 7 A/cm²<br />

Magnetic field due to sense current (Oe)<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Vertical head with CIP MR reader<br />

reader<br />

writer<br />

1m<br />

Planar coil<br />

substrate<br />

shield 1<br />

MR<br />

shield 2<br />

P<str<strong>on</strong>g>in</str<strong>on</strong>g>ned<br />

Free<br />

Fly height 10nm,<br />

100nm<br />

J<br />

Field to be<br />

measured<br />

disk rotat<str<strong>on</strong>g>in</str<strong>on</strong>g>g at 5000 to 10000 rpm.<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


L<str<strong>on</strong>g>in</str<strong>on</strong>g>ear resp<strong>on</strong>se of sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves MR heads<br />

Energy terms <str<strong>on</strong>g>in</str<strong>on</strong>g>fluenc<str<strong>on</strong>g>in</str<strong>on</strong>g>g the orientati<strong>on</strong><br />

of free layer magnetizati<strong>on</strong>:<br />

•Zeeman coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g to H, to coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g field<br />

through Cu spacer and to Oersted field:<br />

E<br />

M1(<br />

H H SV<br />

H J<br />

).s<str<strong>on</strong>g>in</str<strong>on</strong>g>( )<br />

•Uniaxial and shape anisotropy<br />

E<br />

(<br />

K<br />

2<br />

NM s<br />

).cos ²( )<br />

•Dipolar coupl<str<strong>on</strong>g>in</str<strong>on</strong>g>g with p<str<strong>on</strong>g>in</str<strong>on</strong>g>ned layer<br />

E M1H dip<br />

.s<str<strong>on</strong>g>in</str<strong>on</strong>g>( )<br />

M<str<strong>on</strong>g>in</str<strong>on</strong>g>imiz<str<strong>on</strong>g>in</str<strong>on</strong>g>g energy yields s<str<strong>on</strong>g>in</str<strong>on</strong>g>()<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear <str<strong>on</strong>g>in</str<strong>on</strong>g> H.<br />

S<str<strong>on</strong>g>in</str<strong>on</strong>g>ce R varies as M<br />

<br />

1. M<br />

<br />

2<br />

s<str<strong>on</strong>g>in</str<strong>on</strong>g>( )<br />

l<str<strong>on</strong>g>in</str<strong>on</strong>g>ear R(H)<br />

M H<br />

<br />

RH<br />

R R<br />

R 1<br />

<br />

<br />

H<br />

SV<br />

H<br />

I<br />

H<br />

dip<br />

<br />

<br />

K<br />

NM <br />

1<br />

<br />

P AP P<br />

2<br />

2<br />

1<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Experimental optimizati<strong>on</strong> of sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves greatly optimized <str<strong>on</strong>g>in</str<strong>on</strong>g> 1994-2003 for HDD MR heads but replaced <str<strong>on</strong>g>in</str<strong>on</strong>g> 2004 by<br />

TMR heads<br />

NiFeCr/PtMn 120Å/ CoFe 15Å /Ru 7Å/CoFe 5Å/NOL/CoFe 15Å /Cu 20Å/CoFe10Å/NiFe 20Å /NOL<br />

25<br />

p<str<strong>on</strong>g>in</str<strong>on</strong>g>ned<br />

soft<br />

20<br />

GMR (%)<br />

15<br />

10<br />

5<br />

0<br />

-1000 -800 -600 -400 -200 0 200 400 600 800 1000<br />

H (Oe)<br />

GMR amplitude significantly improved by <str<strong>on</strong>g>in</str<strong>on</strong>g>creas<str<strong>on</strong>g>in</str<strong>on</strong>g>g specular reflecti<strong>on</strong> at<br />

boundaries of active part of the sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valve //(p<str<strong>on</strong>g>in</str<strong>on</strong>g>ned/spacer/free)//<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


C<strong>on</strong>clusi<strong>on</strong> <strong>on</strong> CIP GMR :<br />

CIP GMR well modeled by semi-classical Boltzmann theory.<br />

Local c<strong>on</strong>ductivity can <strong>on</strong>ly vary <strong>on</strong> length scale of the order of the elastic<br />

mean free path.<br />

Quantum mechanical theory of CIP transport were proposed to properly<br />

take <str<strong>on</strong>g>in</str<strong>on</strong>g>to account the quantum c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ement/reflecti<strong>on</strong>/refracti<strong>on</strong> effects<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>duced by lattice potential modulati<strong>on</strong>. Predicti<strong>on</strong>s of oscillati<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g><br />

c<strong>on</strong>ductivity and GMR versus thickness but hardly seen <str<strong>on</strong>g>in</str<strong>on</strong>g> experiments due<br />

to <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial roughness<br />

CIP GMR amplitude up to 20% <str<strong>on</strong>g>in</str<strong>on</strong>g> specular sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves.<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-valves were used <str<strong>on</strong>g>in</str<strong>on</strong>g> MR heads of hard disk drives from 1998 to 2004.<br />

Later <strong>on</strong>, they were replaced by Tunnel MR heads.<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


<str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics (Part I)<br />

OUTLINE :<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent transport <str<strong>on</strong>g>in</str<strong>on</strong>g> metallic magnetic multilayers<br />

-Introducti<strong>on</strong> to sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-electr<strong>on</strong>ics<br />

-Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>in</str<strong>on</strong>g> magnetic metal<br />

-Current-<str<strong>on</strong>g>in</str<strong>on</strong>g>-plane Giant Magnetoresistance<br />

-Modell<str<strong>on</strong>g>in</str<strong>on</strong>g>g CIP Giant Magnetoresistance<br />

-Current-perpendicular-to-plane Giant Magnetoresistance<br />

-Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> accumulati<strong>on</strong>, sp<str<strong>on</strong>g>in</str<strong>on</strong>g> current, 3D generalizati<strong>on</strong>.<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Current Perpendicular to Plane GMR<br />

I<br />

I<br />

I<br />

V<br />

Much more difficult to measure,<br />

Either <strong>on</strong> macroscopic samples (0.1mm diameter) with superc<strong>on</strong>duct<str<strong>on</strong>g>in</str<strong>on</strong>g>g leads<br />

(R~ . thickness / area ~ 10 )<br />

or <strong>on</strong> patterned microscopic pillars of area


Serial resistance model for CPP-GMR<br />

Without sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-filp, serial resistance network can be used for CPP transport<br />

CPP transport through F/NM/F sandwich described by:<br />

(a) Parallel magnetic c<strong>on</strong>figurati<strong>on</strong> :<br />

<br />

Ft F<br />

<br />

AR<br />

F / NM<br />

NM<br />

t NM<br />

<br />

AR<br />

F / NM<br />

<br />

Ft<br />

F<br />

<br />

t F F<br />

<br />

AR<br />

F / NM<br />

NM<br />

t NM<br />

<br />

AR<br />

F / NM<br />

<br />

t F<br />

F<br />

(b) Antiparallel magnetic c<strong>on</strong>figurati<strong>on</strong> :<br />

<br />

t F F<br />

<br />

AR<br />

F / NM<br />

NM<br />

t NM<br />

<br />

AR<br />

F / NM<br />

<br />

t F<br />

F<br />

<br />

Ft F<br />

<br />

AR<br />

F / NM<br />

NM<br />

t NM<br />

<br />

AR<br />

F / NM<br />

<br />

Ft<br />

F<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Parallel resistance model for CIP-GMR:<br />

CIP GMR of (Co t Co /Cu t Cu ) 2 multilayers<br />

Serial resistance model for CPP-GMR:<br />

CPP GMR of (Co t Co<br />

/Cu t Cu<br />

) 2<br />

multilayers<br />

Parallel magnetic c<strong>on</strong>figurati<strong>on</strong> :<br />

Parallel c<strong>on</strong>figurati<strong>on</strong> :<br />

Antiparallel c<strong>on</strong>figurati<strong>on</strong> :<br />

<br />

<br />

t Co<br />

/ Cot Co<br />

Cu<br />

Cu t Cu<br />

/ t Cu<br />

<br />

<br />

t Co<br />

/<br />

Co<br />

t Co<br />

Cu t<br />

Cu Cu / t Cu<br />

<br />

<br />

Co t Co<br />

/ tCo<br />

Co<br />

<br />

Cut Cu / t Cu<br />

<br />

<br />

t Co<br />

/ Co t Co<br />

Cu t Cu /<br />

Cu<br />

t Cu<br />

CIP GMR cannot be described<br />

by a parallel resistance network <strong>on</strong>ly<br />

(no change of R between parallel and<br />

antiparallel magnetic c<strong>on</strong>figurati<strong>on</strong>)<br />

Co t Co<br />

Co t Co<br />

Cu t Cu<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> up channel<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> down channel<br />

Antiparallel magnetic c<strong>on</strong>figurati<strong>on</strong> :<br />

Co t Co<br />

Co t Co<br />

Co t Co<br />

Cu t Cu<br />

Cu t Cu Co t Co<br />

Cu t Cu<br />

Cu t Cu<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> up channel<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> down channel<br />

Cu t Cu<br />

Co t Co<br />

Co t Co<br />

Cu t Cu<br />

Cu t Cu<br />

CPP GMR can be « qualitatively » described<br />

by a serial resistance network<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> (without <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-flip, i.e. » no 2009 mix<str<strong>on</strong>g>in</str<strong>on</strong>g>g <str<strong>on</strong>g>European</str<strong>on</strong>g> between <str<strong>on</strong>g>School</str<strong>on</strong>g> up <strong>on</strong> and <strong>Magnetism</strong>, down channels) Timisoara


Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> accumulati<strong>on</strong> – sp<str<strong>on</strong>g>in</str<strong>on</strong>g> relaxati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CPP geometry<br />

F1<br />

F2<br />

In F1:<br />

In F2:<br />

e flow<br />

J<br />

1<br />

2<br />

J<br />

1<br />

2<br />

J <br />

J <br />

l SF<br />

l SF<br />

e flow<br />

Valet and Fert<br />

theory of CPP-GMR<br />

(Phys.Rev.B48,<br />

7099(1993))<br />

z<br />

Different scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates for sp<str<strong>on</strong>g>in</str<strong>on</strong>g> and sp<str<strong>on</strong>g>in</str<strong>on</strong>g> electr<strong>on</strong>s<br />

different sp<str<strong>on</strong>g>in</str<strong>on</strong>g> and sp<str<strong>on</strong>g>in</str<strong>on</strong>g> currents.<br />

Larger scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates for sp<str<strong>on</strong>g>in</str<strong>on</strong>g> : J >>J far from the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface.<br />

Larger scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g rates for sp<str<strong>on</strong>g>in</str<strong>on</strong>g> : J <br />

>>J <br />

far from the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface.<br />

Majority of <str<strong>on</strong>g>in</str<strong>on</strong>g>com<str<strong>on</strong>g>in</str<strong>on</strong>g>g sp<str<strong>on</strong>g>in</str<strong>on</strong>g> electr<strong>on</strong>s, majority of outgo<str<strong>on</strong>g>in</str<strong>on</strong>g>g sp<str<strong>on</strong>g>in</str<strong>on</strong>g> electr<strong>on</strong>s<br />

Build<str<strong>on</strong>g>in</str<strong>on</strong>g>g up of a sp<str<strong>on</strong>g>in</str<strong>on</strong>g>accumulati<strong>on</strong> around the <str<strong>on</strong>g>in</str<strong>on</strong>g>terface balanced <str<strong>on</strong>g>in</str<strong>on</strong>g> steady<br />

state by sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-relaxati<strong>on</strong><br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Start<str<strong>on</strong>g>in</str<strong>on</strong>g>g po<str<strong>on</strong>g>in</str<strong>on</strong>g>t : Valet and Fert theory of CPP-GMR (Phys.Rev.B48, 7099(1993))<br />

<br />

: sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent chemical potential<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-relaxati<strong>on</strong> at F/F <str<strong>on</strong>g>in</str<strong>on</strong>g>terface:<br />

In homogeneous material, = F<br />

-e<br />

J<br />

1<br />

2<br />

J <br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent current driven by<br />

J<br />

<br />

<br />

1<br />

e<br />

<br />

<br />

<br />

z<br />

<br />

J<br />

1<br />

2<br />

J <br />

l SF<br />

l SF<br />

Generalizati<strong>on</strong> of Ohm law<br />

z<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> relaxati<strong>on</strong> :<br />

e<br />

F *<br />

l<br />

F<br />

SF<br />

J<br />

e<br />

<br />

J<br />

z<br />

<br />

<br />

<br />

<br />

<br />

2<br />

2l<br />

SF<br />

<br />

<br />

l SF<br />

=sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-diffusi<strong>on</strong> length (~5nm <str<strong>on</strong>g>in</str<strong>on</strong>g> NiFe, ~20nm <str<strong>on</strong>g>in</str<strong>on</strong>g> Co))<br />

l SF<br />

l SF<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara<br />

z


Interfacial boundary c<strong>on</strong>diti<strong>on</strong>s<br />

<br />

(<br />

)<br />

(<br />

)<br />

(<br />

)<br />

z<br />

<br />

z<br />

r J z<br />

<br />

(<br />

)<br />

i1 i1<br />

i i1<br />

i1<br />

i i1<br />

(Ohm law at <str<strong>on</strong>g>in</str<strong>on</strong>g>terfaces)<br />

J<br />

<br />

(<br />

)<br />

z J z<br />

<br />

(<br />

)<br />

i1 i1<br />

<br />

i i1<br />

(if no <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-flip is c<strong>on</strong>sidered)<br />

Note: Interfacial sp<str<strong>on</strong>g>in</str<strong>on</strong>g> memory loss can be <str<strong>on</strong>g>in</str<strong>on</strong>g>troduced by :<br />

J<br />

<br />

(<br />

)<br />

z J z<br />

<br />

(<br />

)<br />

i1 i1<br />

<br />

i i1<br />

30% memory loss as at Co/Cu <str<strong>on</strong>g>in</str<strong>on</strong>g>terface yields =0.7<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Input microscopic transport parameters to describe macroscopic CPP properties :<br />

With<str<strong>on</strong>g>in</str<strong>on</strong>g> each layer :<br />

-<str<strong>on</strong>g>The</str<strong>on</strong>g> measured resistivity .<br />

-<str<strong>on</strong>g>The</str<strong>on</strong>g> scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g asymmetry .<br />

-<str<strong>on</strong>g>The</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g> diffusi<strong>on</strong> length l sf<br />

.<br />

At each <str<strong>on</strong>g>in</str<strong>on</strong>g>terface :<br />

<br />

<br />

<br />

<br />

2<br />

* 1<br />

( )<br />

<br />

measured<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

* 1<br />

<br />

2<br />

<br />

-<str<strong>on</strong>g>The</str<strong>on</strong>g> measured <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial area*resistance product<br />

r measured<br />

-<str<strong>on</strong>g>The</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g asymmetry .<br />

r<br />

r<br />

<br />

2r<br />

* 1<br />

( )<br />

<br />

<br />

measured<br />

<br />

r<br />

<br />

r<br />

<br />

r<br />

<br />

<br />

r<br />

<br />

r *<br />

<br />

1<br />

2<br />

<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Material<br />

Cu<br />

Au<br />

Measured<br />

resistivity 4K/<br />

300K<br />

0.5-0.7.cm<br />

3-5<br />

2.cm<br />

8<br />

Ni 80<br />

Fe 20<br />

10-15<br />

22-25<br />

Ni 66<br />

Fe 13<br />

Co 21<br />

9-13<br />

20-23<br />

Co 4.1-6.45<br />

12-16<br />

Co 90<br />

Fe 10<br />

6-9<br />

13-18<br />

Co 50<br />

Fe 50<br />

7-10<br />

15-20<br />

Pt 50<br />

Mn 50<br />

160<br />

180<br />

Examples of bulk parameters<br />

Ru 9.5-11<br />

14-20<br />

<br />

Bulk<br />

scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

asymmetry<br />

0<br />

0<br />

0<br />

0<br />

0.73-0.76<br />

0.70<br />

0.82<br />

0.75<br />

0.27 – 0.38<br />

0.22-0.35<br />

0.6<br />

0.55<br />

0.6<br />

0.62<br />

0<br />

0<br />

0<br />

0<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara<br />

l SF<br />

500nm<br />

50-200nm<br />

35nm<br />

25nm<br />

5.5<br />

4.5<br />

5.5<br />

4.5<br />

60<br />

25<br />

55<br />

20<br />

50<br />

15<br />

1<br />

1<br />

14<br />

12


Examples of <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial parameters<br />

Material<br />

Measured R.A<br />

<str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial<br />

resistance<br />

Co/Cu 0.21m.m 2<br />

0.21-0.6<br />

Co 90<br />

Fe 10<br />

/Cu 0.25-0.7<br />

0.25-0.7<br />

Co 50<br />

Fe 50<br />

/Cu 0.45-1<br />

0.45-1<br />

NiFe/Cu 0.255<br />

0.25<br />

NiFe/Co 0.04<br />

0.04<br />

Co/Ru 0.48<br />

0.4<br />

Co/Ag 0.16<br />

0.16<br />

<br />

Interfacial<br />

scatter<str<strong>on</strong>g>in</str<strong>on</strong>g>g<br />

assymetry<br />

0.77<br />

0.7<br />

0.77<br />

0.7<br />

0.77<br />

0.7<br />

0.7<br />

0.63<br />

0.7<br />

0.7<br />

-0.2<br />

-0.2<br />

0.85<br />

0.80<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent currents :<br />

e<br />

J<br />

z<br />

<br />

2l<br />

SF<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> relaxati<strong>on</strong> : <br />

2<br />

<br />

Soluti<strong>on</strong> with<str<strong>on</strong>g>in</str<strong>on</strong>g> each layer:<br />

<br />

<br />

z<br />

<br />

Aexp<br />

B exp<br />

<br />

l <br />

Diffusi<strong>on</strong> equati<strong>on</strong> of sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-accumulati<strong>on</strong><br />

z<br />

sf<br />

l sf<br />

J<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

e<br />

<br />

1<br />

<br />

<br />

z<br />

<br />

Diffusi<strong>on</strong> equati<strong>on</strong> diffusi<strong>on</strong> for sp<str<strong>on</strong>g>in</str<strong>on</strong>g> accumulati<strong>on</strong> <br />

<br />

<br />

( generalized Ohm law <str<strong>on</strong>g>in</str<strong>on</strong>g> the bulk of the layer)<br />

2<br />

<br />

<br />

2<br />

z<br />

A, B <str<strong>on</strong>g>in</str<strong>on</strong>g>tegrati<strong>on</strong> c<strong>on</strong>stants determ<str<strong>on</strong>g>in</str<strong>on</strong>g>ed from <str<strong>on</strong>g>in</str<strong>on</strong>g>terfacial boundary c<strong>on</strong>diti<strong>on</strong>s<br />

2<br />

l SF<br />

J<br />

<br />

<br />

1<br />

<br />

1 <br />

<br />

<br />

grad<br />

<br />

<br />

e z<br />

<br />

Drift due to<br />

electrical field<br />

Diffusi<strong>on</strong> due<br />

to local sp<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

accumulati<strong>on</strong><br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


F<str<strong>on</strong>g>in</str<strong>on</strong>g>al expressi<strong>on</strong> of CPP resistance for any multilayered structures (N layers) :<br />

<br />

AA<br />

i<br />

<br />

AB<br />

i<br />

R<br />

CPP<br />

Where :<br />

<br />

<br />

<br />

1<br />

<br />

<br />

<br />

i<br />

1<br />

<br />

N<br />

<br />

i1<br />

*<br />

i<br />

1 li1<br />

*<br />

i<br />

li<br />

*<br />

1 li1<br />

*<br />

i<br />

li<br />

2 * *<br />

1<br />

<br />

d r 1<br />

<br />

1<br />

<br />

A<br />

<br />

B<br />

<br />

<br />

i<br />

i<br />

i<br />

<br />

i<br />

1<br />

<br />

J<br />

<br />

i<br />

A<br />

i<br />

<br />

<br />

<br />

i<br />

<br />

r<br />

<br />

<br />

i i 1<br />

i<br />

1<br />

1<br />

e <br />

i<br />

A <br />

i<br />

i<br />

<br />

l<br />

1<br />

B<br />

J<br />

i<br />

i<br />

i<br />

<br />

<br />

<br />

<br />

e<br />

<br />

d<br />

l<br />

<br />

<br />

<br />

i i i li<br />

1<br />

1<br />

e e<br />

i<br />

AA AB<br />

1<br />

i<br />

i JJˆ<br />

ˆ <br />

<br />

i<br />

B<br />

<br />

<br />

i<br />

i<br />

with : ˆ<br />

<br />

i <br />

BA BB<br />

1<br />

i <br />

i<br />

i<br />

<br />

di<br />

r <br />

i li<br />

e<br />

*<br />

i l<br />

i <br />

di<br />

r <br />

i li<br />

e<br />

*<br />

<br />

AJ<br />

<br />

<br />

<br />

i l<br />

i <br />

i<br />

and Jˆ<br />

i<br />

<br />

BJ<br />

with :<br />

di<br />

<br />

r <br />

i <br />

i li<br />

e<br />

*<br />

i l<br />

i <br />

<br />

BJ 1 *<br />

*<br />

<br />

d<br />

i r i i li<br />

i <br />

i<br />

i1<br />

1<br />

1<br />

i<br />

i<br />

<br />

r <br />

2<br />

i li<br />

e<br />

AJ 1 *<br />

*<br />

*<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara<br />

i l<br />

i<br />

r i i li<br />

i i<br />

i<br />

i<br />

i1<br />

1<br />

1<br />

<br />

i<br />

i<br />

<br />

<br />

r<br />

1<br />

*<br />

BA <br />

i<br />

li1<br />

i<br />

1 1<br />

<br />

*<br />

i<br />

li<br />

<br />

<br />

*<br />

BB <br />

i1li1<br />

i<br />

1 <br />

<br />

*<br />

i<br />

li<br />

<br />

2<br />

<br />

l<br />

i<br />

i<br />

<br />

<br />

<br />

d<br />

<br />

<br />

i


Comparis<strong>on</strong> of NiFe and FeCo free layer : <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of l SF<br />

Free layer :<br />

NiFe/FeCo<br />

or FeCo <strong>on</strong>ly<br />

.cm m.m² nm nm<br />

F<br />

t<br />

4<br />

Ni 80<br />

Fe 20<br />

l SF NiFe<br />

=4.5nm<br />

Smooth maximum <str<strong>on</strong>g>in</str<strong>on</strong>g> CPP GMR versus t F<br />

R/R (%)<br />

3<br />

2<br />

Fe 50<br />

Co 50<br />

l SF FeCo<br />

=15nm<br />

Phenomenologically,<br />

R 1-exp(-tF/lSF F)<br />

and<br />

R/R [1-exp(-tF/lSF F]/(tF+cst)<br />

1<br />

(c)<br />

Data from Headway Technologies<br />

0<br />

0 5 10 15 20 25 30<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara<br />

Free layer thickness (nm)


Comparis<strong>on</strong> of Cu and Au spacer layers : <str<strong>on</strong>g>in</str<strong>on</strong>g>fluence of l SF<br />

3<br />

2.5<br />

R/R (%)<br />

2<br />

1.5<br />

1<br />

Cu<br />

l SF Cu<br />

=50nm<br />

0.5 Au<br />

l =10nm<br />

SF Au<br />

0<br />

0 10 20 30 40 50<br />

Spacer layer thickness (nm)<br />

Data from Headway<br />

Technologies<br />

Phenomenologically, decrease of R as exp(-tspacer/lSF spacer)<br />

and<br />

R/R as exp(-tspacer/lSF spacer)/(tspacer+cst)<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Generalizati<strong>on</strong> of sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent transport to any geometry (col<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetizati<strong>on</strong>)<br />

Inhomogeneous current distributi<strong>on</strong>s <str<strong>on</strong>g>in</str<strong>on</strong>g> numerous experimental situati<strong>on</strong>s…<br />

Current c<strong>on</strong>f<str<strong>on</strong>g>in</str<strong>on</strong>g>ed paths (CCP) GMR<br />

Current crowd<str<strong>on</strong>g>in</str<strong>on</strong>g>g effects <str<strong>on</strong>g>in</str<strong>on</strong>g> low RA MTJ<br />

K.Nagasaka et al, JAP89 (2001), 6943<br />

H.Fukazawa et al, IEEE Trans.Mag.40 (2004), 2236<br />

See for <str<strong>on</strong>g>in</str<strong>on</strong>g>stance: J.Chen et al,<br />

JAP91(2002), 8783.<br />

Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> transfer oscillators <str<strong>on</strong>g>in</str<strong>on</strong>g> po<str<strong>on</strong>g>in</str<strong>on</strong>g>t-c<strong>on</strong>tact geometry<br />

Metallic CPP heads<br />

Shield 1<br />

J<br />

Shield 2<br />

S.Kaka et al, Nat.Lett.437, 389 (2005)<br />

F.B.Mancoff et al, Nat.Lett.437, 393 (2005)<br />

20nm<br />

… almost all models of sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-dependent transport assume uniform current<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Extend<str<strong>on</strong>g>in</str<strong>on</strong>g>g Valet-fert theory at 3D <str<strong>on</strong>g>in</str<strong>on</strong>g> col<str<strong>on</strong>g>in</str<strong>on</strong>g>ear geometry<br />

J<br />

J<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

grad<br />

<br />

grad<br />

<br />

1 <br />

<br />

Out-of-equilibrium magnetizati<strong>on</strong><br />

<br />

e z <br />

m<br />

<br />

<br />

1 <br />

<br />

B<br />

<br />

e z <br />

energy<br />

DOS<br />

Electrical current:<br />

J<br />

el<br />

<br />

J<br />

<br />

<br />

J<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

grad<br />

<br />

With 1 1<br />

<br />

<br />

<br />

<br />

<br />

<br />

e<br />

<br />

B<br />

<br />

<br />

m<br />

z<br />

J<br />

el<br />

2<br />

grad<br />

<br />

2<br />

m<br />

e<br />

z<br />

3D expressi<strong>on</strong> of electr<strong>on</strong> current:<br />

B<br />

<br />

J<br />

e<br />

<br />

2<br />

<br />

<br />

2<br />

<br />

m<br />

e<br />

<br />

B<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> current:<br />

J<br />

J<br />

J<br />

s<br />

s<br />

m<br />

1<br />

<br />

e <br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

1<br />

<br />

<br />

e <br />

<br />

J<br />

J <br />

<br />

<br />

<br />

<br />

2<br />

<br />

grad<br />

<br />

e <br />

2<br />

e<br />

B<br />

<br />

grad<br />

<br />

<br />

2<br />

m<br />

2<br />

e z<br />

B<br />

2<br />

m<br />

2<br />

e z<br />

<br />

<br />

grad<br />

<br />

<br />

<br />

<br />

: Sp<str<strong>on</strong>g>in</str<strong>on</strong>g> current<br />

<br />

e<br />

<br />

: Moment current<br />

B<br />

<br />

<br />

m<br />

z<br />

<br />

<br />

<br />

3D expressi<strong>on</strong> of moment current:<br />

<br />

J<br />

m<br />

<br />

<br />

<br />

2<br />

e<br />

B<br />

<br />

<br />

<br />

<br />

2<br />

<br />

m<br />

2<br />

e <br />

In col<str<strong>on</strong>g>in</str<strong>on</strong>g>ear magnetizati<strong>on</strong> J m<br />

is a vector<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


J<br />

<br />

J<br />

e<br />

m<br />

<br />

2<br />

<br />

<br />

<br />

<br />

<br />

2<br />

e<br />

B<br />

2<br />

<br />

m<br />

eB<br />

2<br />

<br />

<br />

m<br />

2<br />

e <br />

<br />

m<br />

2 Unknowns: z<br />

Transport equati<strong>on</strong>s:<br />

divJ e<br />

div<br />

J m<br />

0<br />

<br />

<br />

2<br />

l<br />

2 2<br />

sf<br />

derived from Valet/Fert:<br />

1<br />

m<br />

0<br />

e<br />

<br />

J<br />

z<br />

<br />

<br />

<br />

<br />

2<br />

2l<br />

SF<br />

2 Equati<strong>on</strong>s: 1 diffusi<strong>on</strong> of e + 1 diffusi<strong>on</strong> of m<br />

<br />

<br />

Diffusi<strong>on</strong> of charge (with<br />

c<strong>on</strong>servati<strong>on</strong> of charge)<br />

Diffusi<strong>on</strong> of sp<str<strong>on</strong>g>in</str<strong>on</strong>g> (without<br />

sp<str<strong>on</strong>g>in</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> due to<br />

sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-torque and sp<str<strong>on</strong>g>in</str<strong>on</strong>g>relaxati<strong>on</strong><br />

lSF=sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-diffusi<strong>on</strong> length<br />

Can be solved <str<strong>on</strong>g>in</str<strong>on</strong>g> complex geometry with a f<str<strong>on</strong>g>in</str<strong>on</strong>g>ite element solver<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


<str<strong>on</strong>g>in</str<strong>on</strong>g><br />

Cu Cu<br />

out<br />

2D CPP pillar with extended electrodes<br />

Mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of charge current<br />

+2.03·10 -5<br />

200nm<br />

Charge current amplitude<br />

J e<br />

Co3/Cu2/Co3nm<br />

10 times higher current density at<br />

corners than <str<strong>on</strong>g>in</str<strong>on</strong>g> center of CPP-<br />

GMR stack<br />

20nm<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


2D CPP pillar with extended electrodes<br />

z<br />

y<br />

x<br />

Mapp<str<strong>on</strong>g>in</str<strong>on</strong>g>g of y-sp<str<strong>on</strong>g>in</str<strong>on</strong>g> current<br />

( J m,yx<br />

, J m,yy<br />

)<br />

Cu Co/Cu/Co Cu Cu Co/Cu/Co Cu<br />

Very large excess of e<br />

Large<br />

excess<br />

of e<br />

Large<br />

excess<br />

of e<br />

Large <str<strong>on</strong>g>in</str<strong>on</strong>g>plane<br />

sp<str<strong>on</strong>g>in</str<strong>on</strong>g>current<br />

+2.14·10 -4<br />

m y<br />

Parallel<br />

Weak excess of e<br />

Antiparallel<br />

-2.14·10 -4<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


C<strong>on</strong>clusi<strong>on</strong> <strong>on</strong> CPP transport<br />

-Serial resistance model can be used at lowest order of approximati<strong>on</strong> to<br />

describe CPP transport. However, does not take <str<strong>on</strong>g>in</str<strong>on</strong>g>to account sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-flip.<br />

-With sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-flip, sp<str<strong>on</strong>g>in</str<strong>on</strong>g> accumulati<strong>on</strong> and sp<str<strong>on</strong>g>in</str<strong>on</strong>g>-relaxati<strong>on</strong> play an important<br />

role <str<strong>on</strong>g>in</str<strong>on</strong>g> CPP transport.<br />

-Semi-classical theory of transport describes CPP transport fairly well.<br />

CPP macroscopic transport properties (R, R/R) can be calculated from<br />

microscopic transport parameters ( <br />

, l SF<br />

, r <br />

)<br />

-In complex geometry, charge and sp<str<strong>on</strong>g>in</str<strong>on</strong>g> current can have very different<br />

behavior.<br />

Two c<strong>on</strong>tributi<strong>on</strong>s to j <br />

: drift al<strong>on</strong>g electrical field and diffusi<strong>on</strong> al<strong>on</strong>g<br />

gradient of sp<str<strong>on</strong>g>in</str<strong>on</strong>g> accumulati<strong>on</strong>.<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara


Signal/noise rati<strong>on</strong> <str<strong>on</strong>g>in</str<strong>on</strong>g> CIP MR heads<br />

Signal :<br />

V R.<br />

I<br />

Noise :<br />

V<br />

Johns<strong>on</strong><br />

4k<br />

B<br />

TRf<br />

Signal/Noise :<br />

SNR<br />

<br />

V<br />

V<br />

Johns<strong>on</strong><br />

R<br />

<br />

R<br />

<br />

<br />

<br />

power<br />

4k<br />

B<br />

Tf<br />

To maximize the SNR <str<strong>on</strong>g>in</str<strong>on</strong>g> MR heads, the power dissipated <str<strong>on</strong>g>in</str<strong>on</strong>g> the head<br />

must be as large as possible compatible with reas<strong>on</strong>able heat<str<strong>on</strong>g>in</str<strong>on</strong>g>g and<br />

electromigrati<strong>on</strong><br />

~4.10 7 A/cm² used <str<strong>on</strong>g>in</str<strong>on</strong>g> heads with CIP-GMR~15%<br />

B.Dieny « <str<strong>on</strong>g>Models</str<strong>on</strong>g> <str<strong>on</strong>g>in</str<strong>on</strong>g> sp<str<strong>on</strong>g>in</str<strong>on</strong>g>tr<strong>on</strong>ics » 2009 <str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong>, Timisoara

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!