15.01.2015 Views

pt.1 - The European School on Magnetism

pt.1 - The European School on Magnetism

pt.1 - The European School on Magnetism

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Basic c<strong>on</strong>cepts<br />

<strong>on</strong> magnetizati<strong>on</strong> reversal (1)<br />

Static properties : coherent reversal<br />

and bey<strong>on</strong>d<br />

Stanislas ROHART<br />

Laboratoire de Physique des Solides<br />

Université Paris Sud and CNRS<br />

Orsay, France


Introducti<strong>on</strong>: Hysteresis loop<br />

Manipulati<strong>on</strong> of a magnetizati<strong>on</strong> :<br />

Applicati<strong>on</strong> of a magnetic field<br />

Zeeman energy : E z =-µ 0 H.M S<br />

M<br />

Remanent Magnetizati<strong>on</strong> M R<br />

Sp<strong>on</strong>taneous Magnetizati<strong>on</strong> M S<br />

Coercive field H C<br />

H<br />

2<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011


Introducti<strong>on</strong>: Soft and Hard materials<br />

Hard Materials<br />

M<br />

SoftMaterials<br />

M<br />

H<br />

H<br />

Applicati<strong>on</strong>s : Permanent magnets,<br />

motors, magnetic recording<br />

Ex: Cobalt, NdFeB, CoSm, Garnets<br />

Applicati<strong>on</strong>s : Transformer, flux<br />

guide (for electromagnets…),<br />

magnetic shielding<br />

Ex : Ir<strong>on</strong>, FeCo, Permalloy (Fe 20 Ni 80 )<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

3


Introducti<strong>on</strong>: Energies in magnetic systems<br />

Exchange energy<br />

Magnetocrystalline anisotropy energy<br />

≠<br />

E<br />

ex<br />

r r<br />

= −JS<br />

S<br />

=<br />

A<br />

i<br />

j<br />

( ∇θ ) 2<br />

E MC<br />

=<br />

K<br />

r<br />

r<br />

( m.e ) 2<br />

(simplest form, may be more complicated)<br />

reflects the cristal symmetry<br />

Zeeman energy<br />

E Z<br />

r r<br />

= −µ 0<br />

M . H<br />

Dipolar energy<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

r r r<br />

µ ⎛ 3( mi.<br />

ij<br />

)<br />

0<br />

ED<br />

= − ⎜<br />

5<br />

4π<br />

⎝ rij<br />

For practical use :<br />

shape anisotropy<br />

E<br />

D<br />

ij<br />

r<br />

m<br />

−<br />

r<br />

i<br />

3<br />

ij<br />

1 r r<br />

= − µ<br />

0M.<br />

H<br />

d<br />

2<br />

1 r r<br />

= − µ<br />

0M.[<br />

N]<br />

M<br />

2<br />

⎞<br />

⎟<br />

r<br />

. m<br />

⎠<br />

j<br />

4


Introducti<strong>on</strong>: Micromagnetism: Typical Length Scales<br />

Bloch wall<br />

-> Anisotropy vs. Exchange<br />

Exchange length<br />

-> Dipolar coupling vs. Exchange<br />

Ex : Magnetic vortex<br />

( θ ) 2<br />

K sin<br />

2 θ<br />

E = A d +<br />

dx<br />

Bloch wall parameter<br />

Bloch wall width<br />

Bloch wall energy<br />

d B<br />

δ = B<br />

= π<br />

σ<br />

B<br />

= 4<br />

A<br />

K<br />

A<br />

K<br />

AK<br />

Typical value : 2-3 nm (hard)<br />

-> 100-1000 nm (soft)<br />

Λ =<br />

2A µ<br />

2<br />

0M S<br />

~ 2.6Λ<br />

Typical value : 5-10 nm<br />

Quality factor<br />

Q = 2K<br />

µ<br />

2<br />

0M S<br />

=<br />

( Λ ) 2<br />

δ<br />

Q > 1<br />

Q


Introducti<strong>on</strong>: Magnetic Domains<br />

Bulk materials Mesoscopic scale Nanometric scale<br />

Complex magnetic paterns<br />

Self organizati<strong>on</strong> of domains<br />

Small number of possible<br />

c<strong>on</strong>figurati<strong>on</strong>.<br />

Well defined states<br />

Magnetic single domain<br />

but n<strong>on</strong> collinearities are<br />

still possible<br />

True collinear state at very<br />

reduced dimensi<strong>on</strong>s<br />

(< few Λ)<br />

120 µm<br />

130 µm<br />

•Except at very small scales, dipolar energy plays an<br />

essential role [competiti<strong>on</strong> between dipolar energy (l<strong>on</strong>g<br />

range) and domain wall energy (local)].<br />

•Single domain state is observed well below 1 µm or for<br />

hard material .<br />

(square dots –<br />

500 nm)<br />

Cowburn et al. PRL 81, 5414 (1998)<br />

Cowburn J.Phys.D: Appl. Phys.<br />

33, R1 (2000)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

6


C<strong>on</strong>tents<br />

I. Coherent reversal<br />

II. Magnetizati<strong>on</strong> reversal in nanostructures<br />

III. Domain nucleati<strong>on</strong> and domain wall<br />

propagati<strong>on</strong><br />

IV. C<strong>on</strong>clusi<strong>on</strong><br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

7


Coherent reversal: Macrospin hypothesis<br />

Hypothesis : m(r)=cte=M (str<strong>on</strong>g approximati<strong>on</strong>)<br />

Exchange energy is c<strong>on</strong>stant<br />

Dipolar energy equivalent to anisotropy energy<br />

E = G<br />

r r r<br />

M ) − µ M.<br />

H<br />

(<br />

0<br />

Easy axis<br />

θ<br />

M<br />

Simplest model : St<strong>on</strong>er and Wohlfarth<br />

E =<br />

eff<br />

K<br />

eff<br />

K = K + k<br />

2<br />

sin θ − µ<br />

0M<br />

S<br />

H cos( θ + θ<br />

H<br />

)<br />

mc<br />

Anisotropy field :<br />

d<br />

H<br />

K<br />

= 2 Keff<br />

/ µ<br />

0<br />

Dimensi<strong>on</strong>less equati<strong>on</strong> : e = sin 2 θ − 2hcos(<br />

θ + θ )<br />

M<br />

S<br />

H<br />

θ Η<br />

H<br />

Different names : Uniform rotati<strong>on</strong>, coherent<br />

rotati<strong>on</strong>, macrospin, St<strong>on</strong>er and Wohlfarth<br />

model…<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

8


Coherent reversal: Equilibrium states and switching<br />

θ<br />

H<br />

= 0<br />

∂e<br />

=<br />

∂θ<br />

(Field aligned with the anisotropy axis)<br />

e = sin 2 θ − 2hcosθ<br />

Stability<br />

2sinθ<br />

(cosθ<br />

+ h)<br />

∂e<br />

cosθ<br />

= −h<br />

: θ = θm<br />

= 0 ⇒<br />

∂θ<br />

sinθ<br />

= 0 : θ = 0 or π<br />

4<br />

h = 21<br />

0-0.5<br />

-1 -2<br />

2<br />

∂ e<br />

2<br />

∂θ<br />

= −2sin<br />

=<br />

4cos<br />

2<br />

2<br />

θ + 2cos<br />

θ − 2 + 2hcosθ<br />

2<br />

θ + 2hcosθ<br />

e<br />

2<br />

0<br />

-2<br />

2<br />

∂ e<br />

2<br />

∂θ<br />

2<br />

∂ e<br />

2<br />

∂θ<br />

2<br />

∂ e<br />

2<br />

∂θ<br />

(0)<br />

( θ )<br />

m<br />

( π )<br />

= 2(1 + h)<br />

= 2( h<br />

2<br />

−1)<br />

= 2(1 − h)<br />

>0 0<br />

> 0<br />

m=M/M S<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

-4<br />

-2 -1 0 1 2<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal h: Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

−π/2 0 π/2 π 3π/2<br />

ϕ<br />

θ<br />

Square hysteresis<br />

loop<br />

H switch = H K<br />

9


Coherent reversal: Equilibrium states<br />

e<br />

=<br />

sin 2 θ − 2h<br />

cosθ<br />

•Square hysteresis loop<br />

->H switch = H K<br />

1.0<br />

0.5<br />

Energy barrier<br />

m=M/M S<br />

0.0<br />

-0.5<br />

∆e<br />

=<br />

=<br />

=<br />

e(<br />

ϕ ) − e(0)<br />

m<br />

2<br />

( 1−<br />

h + 2h<br />

) − ( − 2h)<br />

( 1+<br />

h) 2 2<br />

-1.0<br />

-2 -1 0 1 2<br />

h<br />

Important for thermally<br />

activated switching<br />

For arbitrary angle :<br />

•no analytical soluti<strong>on</strong><br />

•H K /2


Coherent reversal: Hysteresis Loops<br />

e<br />

θ = 0<br />

=<br />

sin 2 θ − 2hcos(<br />

θ + θ<br />

H<br />

)<br />

θ Η = π/3<br />

1.0<br />

1.0<br />

0.5<br />

0.5<br />

m<br />

0.0<br />

-0.5<br />

-1.0<br />

-2 -1 0 1 2<br />

h<br />

e<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

H switch<br />

m<br />

H switch =H C<br />

11<br />

0.0<br />

-0.5<br />

-1.0<br />

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0<br />

h<br />

e<br />

4<br />

2<br />

0<br />

-2<br />

Switching field (or reversal field)<br />

-> abrupt jump of magnetizati<strong>on</strong> angle<br />

−π/2 0 π/2 π 3π/2<br />

ϕ<br />

4<br />

2<br />

4<br />

2<br />

-4<br />

−π/2 0 π/2 ϕ π 3π/2<br />

Coercive field : M.H = 0<br />

-> may not be equal to the switching field<br />

e<br />

0<br />

-2<br />

-4<br />

H C<br />

ϕ<br />

e<br />

−π/2 0 π/2 π 3π/2<br />

0<br />

-2<br />

-4<br />

−π/2 0 π/2 ϕ π 3π/2<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011


Coherent reversal: Switching field plot : astroids<br />

Astroid curve :<br />

Polar plot of H switch<br />

H<br />

K<br />

H<br />

switch<br />

=<br />

( ) 3/ 2<br />

sin<br />

2/3<br />

θ + cos<br />

2/3<br />

0<br />

1.0<br />

330<br />

30<br />

H<br />

θ<br />

H<br />

0.5<br />

300<br />

60<br />

0.0<br />

270<br />

90<br />

0.5<br />

240<br />

120<br />

H<br />

C<br />

=<br />

H<br />

1<br />

2<br />

switch<br />

1.0<br />

sin 2θ<br />

H<br />

210<br />

π π ⎤<br />

if θ ⎢<br />

⎡ ∈ − H<br />

; @ [ ]<br />

4 4 ⎥ π<br />

⎣ ⎦<br />

⎡π<br />

3π<br />

⎤<br />

if θ<br />

H<br />

∈<br />

⎢<br />

; @ [ π ]<br />

4 4 ⎥<br />

⎣ ⎦<br />

180<br />

150<br />

J.C. Sl<strong>on</strong>czewski (1956)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

12


Coherent reversal: Switching field plot : astroids<br />

h y<br />

r r r<br />

e = G(<br />

m)<br />

− 2h.<br />

m<br />

r<br />

m =<br />

( cosθ,<br />

sinθ )<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

-1.0<br />

2 stable states<br />

Hard axis<br />

Easy axis<br />

-1.0 -0.5 0.0 0.5 1.0<br />

Equilibrim c<strong>on</strong>diti<strong>on</strong><br />

de r r r<br />

= G' ( m)<br />

− 2h.<br />

e = 0 with e v = ( − sinθ,<br />

cosθ )<br />

dθ<br />

-> For given m : Straight line in the field space, tangente<br />

to the critial astroid curve, directed al<strong>on</strong>g m<br />

Stability c<strong>on</strong>diti<strong>on</strong><br />

d²<br />

e r r r<br />

= G"(<br />

m)<br />

+ 2h.<br />

m > 0<br />

dθ<br />

²<br />

->For given m : Only <strong>on</strong>e part of the line is stable<br />

1 stable state<br />

h x<br />

J.C. Sl<strong>on</strong>czewski Research Memo RM 003.111.224, IBM Research Center (1956)<br />

A. Thiaville JMMM 182, 5, (1998)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

13


Coherent reversal: Switching field plot : astroids<br />

-> To go further :<br />

•Complex type of anisotropy<br />

G = sin ² θ cos ²θ<br />

(Cubic anisotropy)<br />

•Three dimensi<strong>on</strong>nal extensi<strong>on</strong><br />

G = sin ² θ cos ² θ + sin ²( θ + π / 6)<br />

(Cubic anisotropy + uniaxial)<br />

Thiaville PRB 61, 12221 (2000)<br />

Thiaville JMMM 182, 5, (1998)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

14


Coherent reversal: Experimental relevance<br />

First observati<strong>on</strong> (2D) : Co (D = 25 nm) cluster<br />

Wernsdorder et al. PRL 78, 1791 (1997)<br />

In 3 D: (same Co cluster) E. B<strong>on</strong>net et al PRL 83, 4188 (1999)<br />

3 nm Co cluster : M. Jamet et al PRL 86, 4676 (2001)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

15


Coherent reversal: Experimental relevance<br />

In technological applicati<strong>on</strong> : memory cells<br />

Measurements of the astroids of elliptical M-RAM cells<br />

(Dimensi<strong>on</strong>s in µm)<br />

C<strong>on</strong>clusi<strong>on</strong> :<br />

Good agreement with coherent<br />

rotati<strong>on</strong> <strong>on</strong>ly for smallest<br />

elements.<br />

⇒Apply coherent reversal with<br />

great care!<br />

⇒In most systems H switch


Magnetizati<strong>on</strong> reversal in nanoparticles<br />

• Is the coherent reversal model applicable to<br />

nanoparticles<br />

• Is a uniform magnetized ground state<br />

sufficient for coherent magnetizati<strong>on</strong> reversal<br />

• Can we go further than coherent<br />

magnetizati<strong>on</strong> reversal<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

17


Nanoparticles: Phase diagram of nanostructures<br />

1. Single domain ground-state criteri<strong>on</strong><br />

Single domain state<br />

N<strong>on</strong> uniform state :<br />

1 domain wall<br />

E<br />

SD<br />

d<br />

=<br />

-Exchange energy is minimum<br />

-Anisotropy energy is minimum<br />

(magnetizati<strong>on</strong> al<strong>on</strong>g easy axis)<br />

-Dipolar energy :<br />

NV 2 1 2 4 3<br />

µ<br />

0M<br />

S<br />

= µ<br />

0M<br />

S<br />

× πR<br />

2 6 3<br />

-Bloch domain wall at the<br />

centre -> exchange and anisotropy<br />

cost :<br />

2<br />

2<br />

EDW<br />

= π R σ<br />

BW<br />

= 4πR<br />

AK<br />

-Dipolar energy gain : magnetic flux<br />

DW<br />

is closed in two domains: E = E<br />

d<br />

SD<br />

d<br />

/ 2<br />

R ⇔ E = E +<br />

SD<br />

SD<br />

d<br />

DW<br />

d<br />

E<br />

DW<br />

!<br />

Domain wall width is neglected<br />

-> calculati<strong>on</strong> adapted for high<br />

anisotropy materials<br />

R<br />

SD<br />

=<br />

36 AK<br />

µ M<br />

0<br />

2<br />

S<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

18


Nanoparticles: Phase diagram of nanostructures<br />

2. Coherent/Incoherent rotati<strong>on</strong> criteri<strong>on</strong><br />

- Schematic calculati<strong>on</strong> : coherent rotati<strong>on</strong> vs. 2 domain rotati<strong>on</strong><br />

θ a θ b θ a θ b<br />

Hypothesis : 2 localized moments<br />

m<br />

at<br />

a / b<br />

= M<br />

SV / 2 x a / b<br />

= ± R / 2<br />

E ⎛ A 1 2 ⎞<br />

2<br />

= − µ<br />

0M<br />

2 S ⎟ a b<br />

2<br />

0 S<br />

+<br />

⎜<br />

⎝<br />

V R<br />

Stability analysis :<br />

diag<strong>on</strong>alize the 2x2 matrix<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> two eigenmodes are :<br />

H<br />

incoh< H incoh if<br />

2 1<br />

2<br />

( θ −θ<br />

) + ( K − µ M H )( θ a θ b )<br />

24 ⎠ 4<br />

⎡<br />

2<br />

∂ E ⎤<br />

⎢ ⎥ and find H that changes the sign of <strong>on</strong>e eigenvalue<br />

⎢⎣<br />

∂θi∂θ<br />

j ⎥⎦<br />

θa<br />

= θb<br />

⇒ H<br />

coh<br />

= H (coherent rotati<strong>on</strong>)<br />

K<br />

M<br />

S<br />

8A<br />

θ<br />

a<br />

= −θ<br />

b<br />

⇒ Hincoh<br />

= H<br />

K<br />

− +<br />

2<br />

3 µ M R<br />

24A<br />

R > µ<br />

2<br />

0M S<br />

Remarks :<br />

R <<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

0<br />

coh<br />

R SD<br />

S<br />

for real materials<br />

anisotropy does not enter in the criteri<strong>on</strong><br />

19


Nanoparticles: Phase diagram of nanostructures<br />

2. Coherent rotati<strong>on</strong> criteri<strong>on</strong><br />

E ⎛ A 1 2 ⎞<br />

2<br />

= − µ<br />

0M<br />

2 S ⎟ a b<br />

2<br />

0 S<br />

+<br />

V<br />

⎜<br />

⎝<br />

R<br />

24<br />

⎠<br />

2 1<br />

2<br />

( θ −θ<br />

) + ( K − µ M H )( θ a θ b )<br />

4<br />

Exchange : the two moments are distant of R and the angle variati<strong>on</strong> is ∆=θ a -θ b . <str<strong>on</strong>g>The</str<strong>on</strong>g><br />

exchange energy density is A(dm/dx)²~A(θ a -θ b )²/R²<br />

Dipolar energy : if θ a =θ b , the dipolar energy is µ 0 M S ²/6. If the two angles are different,<br />

the total magnetizati<strong>on</strong> is lower so that E d decreases by<br />

-[µ 0 M S ²/6]cos(θ a -θ b )/2~ -[µ 0 M S ²/24](θ a -θ b )²<br />

Anisotropy energy : each hemisphere of volume V/2 has the anisotropy energy<br />

K[sin²θ]*V/2~2Kθ²V/4<br />

Zeeman energy : each hemisphere of volume V/2 has the Zeeman energy<br />

-µ 0 M S H[cosθ]*V/2~ -µ 0 M S Hθ²*V/4<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

20


Nanoparticles: Phase diagram of nanostructures<br />

2. Coherent/Incoherent rotati<strong>on</strong> criteri<strong>on</strong><br />

Real reversal mechanisms :<br />

3.0<br />

2.5<br />

Incoherent Reversal<br />

Coherent Reversal<br />

2.0<br />

Coherent<br />

Curling, Buckling<br />

H SW<br />

/H K<br />

1.5<br />

1.0<br />

For curling :<br />

H<br />

R<br />

sw<br />

crit<br />

=<br />

=<br />

H<br />

0<br />

K<br />

26A<br />

µ M<br />

2<br />

S<br />

−<br />

M<br />

S<br />

8.67A<br />

+<br />

3 µ M R<br />

0<br />

S<br />

2<br />

0.5<br />

0.0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0<br />

R/R coh<br />

See: Ahar<strong>on</strong>i Introducti<strong>on</strong> to<br />

the theory of Ferromagnetism (1996)<br />

Skomski and Coey Permanent <strong>Magnetism</strong> (1999)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

21


Nanoparticles: Phase diagram of nanostructures<br />

Phase diagram for a flat disk with surface anisotropy<br />

K eff = K S /t<br />

Skomski et al. PRB 58, 3223 (1998)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

22


Nanoparticles : Influence of nanostructure inhomogeneity<br />

Dipolar field effect<br />

-> Soft elements: flux closure domains faciliate magnetic reversal<br />

H<br />

H<br />

K<br />

C<br />

= 5000Oe<br />

= 3M<br />

S<br />

t<br />

W<br />

+ cte<br />

Shape anisotropy ~ M S L/W<br />

but switching field intependant of L<br />

Uhlig and Shi APL 84, 759 (2004)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

23


Nanoparticles : Influence of nanostructure inhomogeneity<br />

Dipolar field effect<br />

-> Soft elements<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

24


Nanoparticles : Influence of nanostructure inhomogeneity<br />

Edge and surface anisotropy in very small elements<br />

Origin : enhanced magnetic anisotropy at low coordinated atoms<br />

Co islands <strong>on</strong> Pt(111)<br />

Nearly spherical Co cluster<br />

Néel pair anisotropy model<br />

Gambardella et al. Science 300, 1130 (2003) Jamet et al. PRL 86, 4676 (2001)<br />

E<br />

∑<br />

r<br />

r<br />

2<br />

a<br />

= L(<br />

m.<br />

u ij<br />

)<br />

< i,<br />

j><br />

n.<br />

n.<br />

On spherical clusters, atom anisotropy axis are perpendicular<br />

to the local surface<br />

-> Hedgehog like orientati<strong>on</strong> of anisotropy axis<br />

Kachkachi and Dimian PRB 66,174419 (2002)<br />

Néel J. Phys. Radium 15, 225 (1954)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

25


Nanoparticles : Influence of nanostructure inhomogeneity<br />

Edge and surface anisotropy in very small elements<br />

C<strong>on</strong>sequence of surface anisotropy axis distributi<strong>on</strong><br />

J >> K surface = K volume<br />

m z<br />

h<br />

1 particle 1 macrospin<br />

J ~ K surface >> K volume<br />

N<strong>on</strong> colinear magnetic c<strong>on</strong>figurati<strong>on</strong><br />

Atomic simulati<strong>on</strong> : L/J=2<br />

(unphysically str<strong>on</strong>g surface anisotropy!)<br />

Kachkachi and Dimian PRB 66,174419 (2002)<br />

Garanin and Kachkachi PRL 90 065504 (2003)<br />

m z<br />

h<br />

1 particle assembly of many coupled spins<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

26


Nanoparticles : Influence of nanostructure inhomogeneity<br />

Edge and surface anisotropy in very small elements<br />

Effective anisotropy model<br />

1.0<br />

Example: flat disk with edge anisotropy<br />

0.5<br />

Exchange<br />

Shape anisotropy<br />

(in plane)<br />

m Z<br />

0.8535<br />

0.8190<br />

Edge anisotropy<br />

(out of plane)<br />

H Z<br />

/H K<br />

0.0<br />

-0.5<br />

Y (u.a.)<br />

0.7845<br />

0.7500<br />

0.7155<br />

-1.0<br />

-1.0 -0.5 0.0 0.5 1.0<br />

H X<br />

/H K<br />

Typical astroid with a 4 th order anisotropy<br />

X (u.a.)<br />

Twisted inhomogeneous c<strong>on</strong>figurati<strong>on</strong><br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

Rohart et al. PRB 76, 104401 (2007)<br />

Garanin and Kachkachi PRL 90 065504 (2003)<br />

27


Nanoparticles: Vortices<br />

⇒Str<strong>on</strong>gly inhomogeneous magnetic state<br />

Wachowiak et al. Science 298 577 (2002)<br />

Cowburn et al. PRL 83, 1042 (1999)<br />

Four degenerated states :<br />

-vortex cirulati<strong>on</strong> (clock wise vs. Counter clock wise)<br />

-> difficult to manipulate with magnetic field<br />

-Vortex core (up vs. Down) -> easily coupled to magnetic field<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

28


Nanoparticles: Vortices<br />

Hysteresis loop with IN PLANE magnetic field<br />

Stable vortex state<br />

Stable uniform state<br />

<str<strong>on</strong>g>The</str<strong>on</strong>g> energy cost to expell the vortex core<br />

out of the disk creates an hysteresis<br />

Cowburn et al. PRL 83, 1042 (1999)<br />

Guslienko and Metlov PRB 63, 100403R (2001)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

29


Nanoparticles: Vortices<br />

Vortex core magnetizati<strong>on</strong> reversal<br />

Magnetic field is coupled to the vortex core <strong>on</strong>ly<br />

but coherent reversal of vortex core magnetizati<strong>on</strong><br />

is topologically impossible<br />

Shinjo et al. Science 289, 930 (2000) Normal vortex state : magnetizati<strong>on</strong> is<br />

perpendicular to minimize exchange<br />

energy<br />

E<br />

E<br />

ex<br />

BP<br />

( r)<br />

= 2A/<br />

r<br />

2<br />

= ∫∫∫ E ( r)<br />

r sinθdrdθdϕ<br />

= 8πAR<br />

ex<br />

Vortex with Bloch point: magnetic<br />

moment are all almost in plane, mean<br />

magnetizati<strong>on</strong> is zero at the core<br />

Bey<strong>on</strong>d micromagnetism<br />

Thiaville et al. PRB 67, 094410 (2003)<br />

Images from R. Dittrich http://magnet.atp.tuwien.ac.at/gallery/bloch_point/index.html<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

30


Nanoparticles: Vortices<br />

Vortex core magnetizati<strong>on</strong> reversal<br />

Experiments : Okuno et al. JMMM 240, 1 (2006)<br />

Thiaville et al. PRB 67, 094410 (2003)<br />

Images from R. Dittrich http://magnet.atp.tuwien.ac.at/gallery/bloch_point/index.html<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

31


Magnetizati<strong>on</strong> reversal in thin films<br />

Is the macrospin model relevant for thin films <br />

-Lateral dimensi<strong>on</strong> >> Micromagnetic lengthes<br />

-Experimental observati<strong>on</strong> : H C


Thin Films: Hard axis hysteresis loops<br />

In some cases, coherent reversal can be applied to hard axis hysteresis loops<br />

M<br />

M S<br />

H<br />

M<br />

2K/µ 0 M S<br />

H<br />

-In hard axis loop, domain nucleati<strong>on</strong> is<br />

prevented (the two orientati<strong>on</strong> energies are<br />

the same) and coherent rotati<strong>on</strong> is possible.<br />

=> Applicati<strong>on</strong>: determinati<strong>on</strong> of magnetic<br />

anisotropy and M S<br />

Example1: Soft magnetic film<br />

Permalloy thin film<br />

-no magnetocristalline anisotropy<br />

-in plane magnetizati<strong>on</strong> due to the shape<br />

1 2<br />

anisotropy E<br />

d<br />

=<br />

2<br />

µ<br />

0M S<br />

=> Loop with perpendicular field yields a<br />

saturati<strong>on</strong> field of M S<br />

Example2: « Anisometry »<br />

Ga(Mn)As thin film<br />

(with perpendicular magnetizati<strong>on</strong>)<br />

•Polar Kerr effect measurment<br />

with quasi in plane field (α)<br />

sin 2θK<br />

eff<br />

H =<br />

; M = M<br />

M cos<br />

S<br />

( θ + α )<br />

s<br />

cosθ<br />

M S<br />

-> K eff = 272 mT<br />

J.P. Adam PhD. <str<strong>on</strong>g>The</str<strong>on</strong>g>sis 2008<br />

M S cos(α)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

Principle/Applicati<strong>on</strong>:<br />

Grolier et al. J. Appl. Phys. 73,<br />

5939 (1993)<br />

33


Thin Films: Brown’s paradox<br />

Origin of the lower coercivity : magnetic defects, temperature<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

34


Thin Films: Nucleati<strong>on</strong> vs. Propagati<strong>on</strong><br />

First magnetizati<strong>on</strong> curve indicates the type of coercivity<br />

M<br />

Nucleati<strong>on</strong> limited reversal<br />

-> Need few nucleati<strong>on</strong> event<br />

followed by domain wall<br />

propagati<strong>on</strong><br />

-> Provides generally square<br />

loops<br />

H<br />

Pinning<br />

center<br />

Magnetizati<strong>on</strong> reversal is c<strong>on</strong>trolled by the<br />

micro/nanostructure<br />

->Soft inclusi<strong>on</strong>, misoriented grains…<br />

create nucleati<strong>on</strong> centers<br />

->Hard inclusi<strong>on</strong>,crystalline defect…<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

Propagati<strong>on</strong> limited reversal<br />

-> Need many nucleati<strong>on</strong> events<br />

-> Provides generally rounded loops<br />

Ex : Recording media<br />

create pinning centers 35


Thin Films: Nucleati<strong>on</strong> – « 1/cos θ Η law »<br />

Nucleati<strong>on</strong> of a reversed domain <strong>on</strong> defect -> Nucleati<strong>on</strong> volume<br />

3<br />

• v ≈ δ for bulk hard magnets Givord et al. JMMM 258, 1 (2003)<br />

• Droplet theory for thin films Barbara JMMM 129, 79 (1994)<br />

Nucleati<strong>on</strong> cost (domain wall, anisotropy energy ) E 0<br />

M<br />

is compensated by Zeeman energy gain (plus thermal energy)<br />

If H<br />

c<br />

In plane magnetizati<strong>on</strong> with<br />

well defined in plane<br />

anisotropy (step edges)<br />

G. Baudot PhD. <str<strong>on</strong>g>The</str<strong>on</strong>g>sis,<br />

unpublished (2003)<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

36


Thin Films: Nucleati<strong>on</strong> vs. DW propagati<strong>on</strong><br />

Importance of dynamics<br />

Key ingredient :<br />

-> Nucleati<strong>on</strong> rate<br />

-> Domain wall propagati<strong>on</strong> dynamics<br />

Pt/Co/Pt<br />

(From J. Vogel)<br />

Coercive field may not be an intrinsic property<br />

(ie. <strong>on</strong>ly linked to micromagnetic parameters)<br />

-> depend <strong>on</strong> temperature<br />

-> depend <strong>on</strong> sweeping rate<br />

S. ROHART : Basic C<strong>on</strong>cepts <strong>on</strong> Magnetizati<strong>on</strong> Reversal : Static Properties<br />

<str<strong>on</strong>g>European</str<strong>on</strong>g> <str<strong>on</strong>g>School</str<strong>on</strong>g> <strong>on</strong> <strong>Magnetism</strong> - Targosite 2011<br />

See sec<strong>on</strong>d part of the lecture<br />

<strong>on</strong> temperature activati<strong>on</strong> and<br />

slow dynamics<br />

37


C<strong>on</strong>clusi<strong>on</strong><br />

Take home messages<br />

•Coherent (uniform) magnetizati<strong>on</strong> reversal <strong>on</strong>ly takes place in very small particles<br />

•Micromagnetism is powerfull to determine the switching mode in nanoparticles<br />

•In thin films: Importance of micro/nano structure of magnetic films to determine the<br />

reversal mechanism<br />

•Coercive field may be ambiguous (different from switching field, not intrinsic…)<br />

To go further<br />

•Temperature influence and slow dynamics<br />

•Precessi<strong>on</strong>nal magnetizati<strong>on</strong> reversal (ns time scale, need loweer magnetic fields)<br />

•Ultra fast magnetizati<strong>on</strong> reversal (bey<strong>on</strong>d micromagnetism hypothesis M=cte)<br />

•New driving forces for magnetizati<strong>on</strong> reversal (spin polarized currents, electrical field…)<br />

Some readings<br />

•Skomski and Coey Permanent magnetism (Taylor & Francis Group 1999)<br />

•Hubert and Schäfer Magnetic domains (Springer 1999)<br />

•Ahar<strong>on</strong>i Introducti<strong>on</strong> to the theory of ferromagnetism (Oxford 1996)<br />

•Skomski Nanomagnetics J. Phys. C<strong>on</strong>d. Mat. 15, R841 (2003)<br />

•Fiorani Surface effects in Magnetic Nanoparticles (Springer 2005)<br />

•Fruchart and Thiaville <strong>Magnetism</strong> in reduced dimensi<strong>on</strong>s CR Physique 6 921 (2005)<br />

38

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!