21.11.2014 Views

AfM Technology Volumetric Compensation of machine tools

AfM Technology Volumetric Compensation of machine tools

AfM Technology Volumetric Compensation of machine tools

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

The Engineering &<br />

Calibration Service Company<br />

for<br />

<strong>Volumetric</strong> <strong>Compensation</strong> <strong>of</strong> <strong>machine</strong> <strong>tools</strong> / CMM<br />

Linear and rotary axis calibration <strong>of</strong> <strong>machine</strong> <strong>tools</strong> / CMM<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 1


Aachen colloquium for 5-Axis precision machining<br />

Agenda<br />

• Geometric deviations <strong>of</strong> <strong>machine</strong> <strong>tools</strong><br />

• Metrological parameter aquisition<br />

• <strong>Compensation</strong> in the CNC control<br />

• Limitations in aquisition and compensation<br />

• Trends and challenges<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 2


Aachen colloquium for 5-Axis precision machining<br />

Geometric deviations <strong>of</strong> <strong>machine</strong> <strong>tools</strong><br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 3


Influences on <strong>machine</strong> tool accuracy<br />

Drives<br />

Dynamic<br />

Geometry<br />

• Component<br />

deviations<br />

• Location deviations<br />

• Model fitness<br />

• Machine coordinate<br />

system<br />

Thermal<br />

influences<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 4


Geometric deviations on a linear <strong>machine</strong> axis<br />

Each linear guide has 6 degrees <strong>of</strong> freedom, 3 translational und 3 rotational<br />

translational movement<br />

(transverse to the guide axis) / EZX<br />

translational movement<br />

(transverse to the guide axis) EYX<br />

support<br />

rotational movement:<br />

around X = roll / EAX<br />

around Y = pitch / EBX<br />

around Z = yaw / ECX<br />

guide<br />

translational movement (position) / EXX<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Horst Eckersberger<br />

Page 5


Geometric deviations on a rotary <strong>machine</strong> axis<br />

Each rotary axis has 6 degrees <strong>of</strong> freedom, 3 translational und 3 rotational<br />

translational movement (axial runout in Z) / EZC<br />

translational movement (radial runout in Y) / EYC<br />

support<br />

rotational movement:<br />

around X = wobble / EAC<br />

around Y = wobble / EBC<br />

around Z = position / ECC<br />

Rotary table<br />

translational movement (radial runout in X) / EXC<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Horst Eckersberger<br />

Page 6


Kinematic chain <strong>of</strong> a <strong>machine</strong> tool<br />

Kinematic chain<br />

t – S – A – B – Y – Z – MB – X – C – MT – w<br />

Spindle<br />

Tool<br />

Machine<br />

base<br />

Work<br />

piece<br />

© <strong>AfM</strong> / Keppler<br />

Component dev.<br />

location dev.<br />

• 3 linear axes<br />

• 3 rotary axes<br />

• 1 spindle<br />

3 x 6 = 18<br />

3 x 6 = 18<br />

1 x 5 = 5<br />

3 x 3 = 9<br />

3 x 5 = 15<br />

1 x 4 = 4<br />

∑ = 69<br />

deviations<br />

• coordinate system<br />

- 6<br />

• Effective deviations<br />

41<br />

28<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 7


Resulting errors at the tool center point (linear axes)<br />

Geometric errors<br />

• positioning error<br />

• straightness<br />

• roll<br />

• yaw<br />

• pitch<br />

• squareness<br />

Resulting error<br />

at TCP<br />

• positioning error<br />

• orientation error<br />

Programmed<br />

tool position<br />

and<br />

tool orientation<br />

Real<br />

tool<br />

orientation<br />

Real<br />

TCP<br />

position<br />

The geometrical errors <strong>of</strong> the linear axes <strong>of</strong> a 3-axes <strong>machine</strong> tool cause spatial errors <strong>of</strong> the TCP<br />

concerning position and orientation.<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Horst Eckersberger<br />

Page 8


Resulting errors at the tool center point (rotary axes)<br />

Geometric errors<br />

• runout<br />

• wobble<br />

• position<br />

• location <strong>of</strong> axis<br />

• orientation <strong>of</strong> axis<br />

• zero position<br />

Resulting error<br />

at TCP<br />

Real<br />

tool<br />

orientation<br />

Real<br />

TCP<br />

position<br />

• positioning error<br />

• orientation error<br />

The component and location errors <strong>of</strong> the radial axes <strong>of</strong> a 4/5/6-axes <strong>machine</strong> tool causes also<br />

spatial errors <strong>of</strong> the TCP concerning position and orientation.<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 9


Aachen colloquium for 5-Axis precision machining<br />

Metrological parameter aquisition<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 10


Measurement methods for error parameters<br />

Direct Measurement<br />

Indirect Measurement<br />

Component<br />

deviations<br />

• Laserinterferometer<br />

• Straightness artefact<br />

& indicator (Wire /<br />

Stone)<br />

• Levels<br />

• Reference encoders<br />

Reference scales<br />

• Autokollimator<br />

Location<br />

deviations<br />

• Laserinterferometer<br />

• 90° stone angle,<br />

calibration cube &<br />

dial indicator<br />

• Levels<br />

• Test mandrel & dial<br />

indicator<br />

Component and location<br />

deviations<br />

• Ball bar, ball plate, Tetraeder<br />

• Reference parts<br />

• Circular test<br />

• Ball & 3D-Probe<br />

• Lasertracker<br />

• LaserTRACER<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 11


Direct measurement <strong>of</strong> linear axis with single-purpose <strong>tools</strong><br />

• A great variety <strong>of</strong> <strong>tools</strong> is used<br />

Levels<br />

Reference scales<br />

Straightness laser<br />

Autokollimator<br />

Straightness artefact & indicator (Wire / Stone)<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 12


Direct measurement <strong>of</strong> linear axis with laser interferometer<br />

• Laserinterferometer available with 1 up to 6 DOF<br />

Renishaw (1-DOF)<br />

• High accurate, long range<br />

• Alignment effort, particularly for vertical and<br />

straightness measurement is high<br />

TSK (3-DOF)<br />

API (6-DOF)<br />

HP Agilent (1-DOF)<br />

© TSK<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 13


Direct measurement <strong>of</strong> rotary axis<br />

Test mandrell<br />

HEIDENHAIN Reference encoder RON 905<br />

&<br />

dial indicator<br />

Laserinterferometer with Renishaw RX10<br />

API Swivelcheck<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 14


Indirect measurement <strong>of</strong> linear axis with ball bars<br />

Renishaw QC-20W<br />

• Fast and easy measurement<br />

• Geometric and drive analysis<br />

• Applicable in any plane<br />

• Mind the volume size<br />

Dreier RoundCheck VA<br />

API Ballbar<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 15


Indirect measurement <strong>of</strong> component and location deviation<br />

• Ball bars (1D), ball plates (2D), Tetraeder (3D)<br />

Ball plate<br />

• Fixed grid, limited dimension, handling complex<br />

Ball bar<br />

© Pr<strong>of</strong>. Knapp ETH Zürich<br />

Tetraeder<br />

© IBS Precision Engineering<br />

© Dr. Trapet<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 16


Indirect measurement <strong>of</strong> linear axis with laser interferometer<br />

Optodyne MCV 500<br />

© Dr. Trapet<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 17


Indirect measurement by multilateration with LaserTRACER<br />

• Linear axis calibration<br />

• Rotary axis calibration<br />

• Acceptance test according<br />

to ISO 230-2/4/6 and ISO<br />

10360-2<br />

LaserTRACER MT<br />

LaserTRACER<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 18


Online multilateration with LaserTRACER<br />

What is Multilateration?<br />

• Ideal realization <strong>of</strong> the Abbe Principle: All measurement<br />

lines pass directly through the measurement point.<br />

• Principle is used in Global Positioning System (based on<br />

time <strong>of</strong> flight measurement).<br />

• With LaserTRACERs, the principle can be downscaled to<br />

submicron accuracy in a medium measurement volume.<br />

© Etalon<br />

• If four LaserTRACERs are used, the system is self calibrating<br />

Characteristics<br />

• Mobile, Self calibration<br />

• Contactless, 3D measure<br />

• Working volume up to 10 m x 10 m x 10 m.<br />

• Direct traceability by stabilized laser interferometer.<br />

• Highest resolution and accuracy (down to sub-micron range)<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 19


3D Messung mit LaserTracker<br />

Moving<br />

Active Target (AT)<br />

Lasertracker<br />

Stationary<br />

T3 Laser Tracker<br />

(with Pan & Tilt)<br />

© API<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 20


Rotary axis calibration with ball and 3D probe<br />

• Rotary and swivel axis as well as trunion table are<br />

supported<br />

Trunion Table Calibration<br />

• Fixed ball, moved probe or fixed probe and moved ball<br />

• Fast, easy and automatic cycle<br />

Up to 3 rotary axis at once<br />

Fork Head Calibration<br />

© HEIDENHAIN<br />

© Fidia<br />

© IBS Engineering Precision<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 21


Aachen colloquium for 5-Axis precision machining<br />

<strong>Compensation</strong> in the CNC control<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 22


Geometric compensations in CNC controllers<br />

Geometric compensations (stand alone or as combination)<br />

• Linear encoder error compensation (slope)<br />

• Non linear encoder error compensation (arbitrary form)<br />

• Cross error compensation<br />

• Grid compensation<br />

• <strong>Volumetric</strong> compensation<br />

Stand alone or as part <strong>of</strong> geometric compensation<br />

• Backlash compensation<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 23


deviation [µm]<br />

0<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

1200<br />

1400<br />

1600<br />

1800<br />

2000<br />

2200<br />

2400<br />

2600<br />

2800<br />

3000<br />

3200<br />

3400<br />

Linear and non linear encoder error compensation<br />

linear encoder error compensation (slope)<br />

100,0<br />

Position deviation y-axis<br />

80,0<br />

60,0<br />

40,0<br />

20,0<br />

0,0<br />

-20,0<br />

-40,0<br />

yTy / EYY<br />

Linear (yTy / EYY)<br />

Non linear encoder error compensation (arbitrary form)<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 24


Cross error compensation<br />

• Crosstalk <strong>of</strong> any axis combination can be compensated<br />

• <strong>Compensation</strong> <strong>of</strong> straightness and squareness<br />

© HEIDENHAIN<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 26


3D Grid compensation<br />

• The volume is divided in cubes or a spherical grid<br />

• Each corner <strong>of</strong> the cube is represent by an error vector<br />

• Used for linear axis as well as rotary axis<br />

∆X i<br />

∆Y i = f(A,C)<br />

∆Z i<br />

© Bosch Rexroth<br />

© Siemens © FANUC<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 27


<strong>Volumetric</strong> compensation<br />

E = T e + R em * P m + R et * P t<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 28


Backlash compensation<br />

Backlash compensation<br />

Backlash U / U1<br />

As single axis parameter<br />

z.B. Siemens 840D sl<br />

MD 32450 Backlash compensation<br />

$MA_BACKLASH[0]=0.002 mm<br />

As data set along the axis<br />

Position deviation B-Axis (forward & backward travel)<br />

20,0<br />

10,0<br />

0,0<br />

-29,0 -24,0 -19,0 -14,0 -9,0<br />

-10,0<br />

-4,0 1,0 6,0 11,0 16,0 21,0 26,0<br />

-20,0<br />

-30,0<br />

-40,0<br />

without CEC [0,001°] with CEC [0,001°]<br />

without CEC [0,001°] with CEC [0,001°]<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 29


Aachen colloquium for 5-Axis precision machining<br />

Limitations in aquisition and compensation<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 33


Limitation by model fitness (I)<br />

EZY (y,z)<br />

yTz (y,z)<br />

EAY (y,z)<br />

yRx (y,z)<br />

Crosstalking from Z-axis to Y-axis<br />

Y<br />

Z<br />

yTz = yTz(y) + Ytz(y,z) *z<br />

Z<br />

Y<br />

Z<br />

yRx = yRx(y) + yRxz(y,z) * z<br />

Y<br />

EZY = EZY(y) + EZYZ(y,z) *z<br />

EAY = EAY(y) + EAYZ(y,z) * z<br />

21 Error Model<br />

23 Error Model<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

±3s ≈ ±30,6 µm<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

±3s ≈ ±18,3 µm<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 34


deviation [µrad]<br />

deviation [µm/m]<br />

0<br />

0<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

1200<br />

1400<br />

1600<br />

1800<br />

2000<br />

2200<br />

2400<br />

2600<br />

2800<br />

3000<br />

3200<br />

3400<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

1200<br />

1400<br />

1600<br />

1800<br />

2000<br />

2200<br />

2400<br />

2600<br />

2800<br />

3000<br />

3200<br />

3400<br />

deviation [µrad/m]<br />

0<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

1200<br />

1400<br />

1600<br />

1800<br />

2000<br />

2200<br />

2400<br />

2600<br />

2800<br />

3000<br />

3200<br />

3400<br />

Limitation by model fitness (II)<br />

20,0<br />

15,0<br />

10,0<br />

5,0<br />

0,0<br />

-5,0<br />

-10,0<br />

-15,0<br />

-20,0<br />

-25,0<br />

Pitch y-axis<br />

yRx / EAY with 21 model<br />

yRx / EAY with 23 model<br />

Squareness yWz / AOZ<br />

1,000000<br />

0,000000<br />

deviation [µrad]<br />

yWz/AOZ<br />

yWz/AOZ<br />

with 23 model<br />

Bending <strong>of</strong> Column<br />

Yaw <strong>of</strong> Column<br />

100,0<br />

90,0<br />

80,0<br />

70,0<br />

60,0<br />

50,0<br />

40,0<br />

30,0<br />

20,0<br />

10,0<br />

0,0<br />

-10,0<br />

30,0<br />

25,0<br />

20,0<br />

15,0<br />

10,0<br />

5,0<br />

0,0<br />

-5,0<br />

YTZZ with 21 model<br />

YTZZ with 23 model<br />

YRXZ with 21 model<br />

YRXZ with 23 model<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 35


-0,0300<br />

-0,0270<br />

-0,0240<br />

-0,0210<br />

-0,0180<br />

-0,0150<br />

-0,0120<br />

-0,0090<br />

-0,0060<br />

-0,0030<br />

0,0000<br />

0,0030<br />

0,0060<br />

0,0090<br />

0,0120<br />

0,0150<br />

0,0180<br />

0,0210<br />

0,0240<br />

0,0270<br />

0,0300<br />

Limitation by volumetric backlash<br />

<strong>Volumetric</strong> backlash analysis<br />

Position 1 Position 2 Position 3 Position 4 Position 5 Position 6 Total<br />

Maximum 0,0187 0,0290 0,0170 0,0271 0,0142 0,0087 0,0087<br />

Minimum -0,0281 -0,0234 -0,0255 -0,0183 -0,0149 -0,0153 -0,0153<br />

Range 0,0468 0,0524 0,0426 0,0454 0,0290 0,0240 0,0240<br />

Std. dev. σ 0,0101 0,0119 0,0089 0,0092 0,0056 0,0061 0,0061<br />

±3σ (99,73%) 0,0607 0,0717 0,0532 0,0549 0,0338 0,0369 0,0369<br />

Drift 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000<br />

x̅ + 3σ 0,0303 0,0358 0,0266 0,0275 0,0169 0,0184 0,0184<br />

Average x̅ 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000<br />

x̅ - 3σ -0,0303 -0,0358 -0,0266 -0,0275 -0,0169 -0,0184 -0,0184<br />

180<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Backlash distribution<br />

0,040<br />

0,030<br />

0,020<br />

0,010<br />

0,000<br />

-0,010<br />

-0,020<br />

-0,030<br />

-0,040<br />

Backlash single values<br />

1 26 51 76 101 126 151 176 201 226 251<br />

x̅ - 3σ x̅ + 3σ Pos1 Pos2<br />

Pos3 Pos4 Pos5 Pos6<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer <strong>Volumetric</strong> <strong>Compensation</strong> <strong>of</strong> <strong>machine</strong> <strong>tools</strong><br />

Page 36


10:15:00<br />

12:00:00<br />

13:45:00<br />

15:30:00<br />

17:15:00<br />

19:00:00<br />

20:45:00<br />

22:30:00<br />

00:15:00<br />

02:00:00<br />

03:45:00<br />

05:30:00<br />

07:15:00<br />

09:00:00<br />

10:45:00<br />

12:30:00<br />

14:15:00<br />

16:00:00<br />

17:45:00<br />

19:30:00<br />

21:15:00<br />

23:00:00<br />

00:45:00<br />

02:30:00<br />

04:15:00<br />

06:00:00<br />

07:45:00<br />

09:30:00<br />

11:15:00<br />

13:00:00<br />

14:45:00<br />

16:30:00<br />

18:15:00<br />

20:00:00<br />

21:45:00<br />

23:30:00<br />

01:15:00<br />

03:00:00<br />

04:45:00<br />

06:30:00<br />

08:15:00<br />

10:00:00<br />

11:45:00<br />

13:30:00<br />

15:15:00<br />

17:00:00<br />

18:45:00<br />

20:30:00<br />

22:15:00<br />

00:00:00<br />

01:45:00<br />

03:30:00<br />

05:15:00<br />

07:00:00<br />

Limitation by temperature conditions<br />

Temperature over time<br />

22,0<br />

21,0<br />

Calibration<br />

with AC-Head<br />

Calibration<br />

With AC-Head<br />

Verification<br />

With AC-Head<br />

Calibration<br />

W-Axis<br />

Verification<br />

W-Axis<br />

Calibration<br />

With Quill<br />

Verification with Quill<br />

20,0<br />

19,0<br />

18,0<br />

17,0<br />

16,0<br />

15,0<br />

14,0<br />

13,0<br />

X-Achse (min) [°C] X-Achse (max) [°C] Z-Achse [°C] Y-Achse (min) [°C] Y-Achse (max) [°C] Luft [°C]<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer <strong>Volumetric</strong> <strong>Compensation</strong> <strong>of</strong> <strong>machine</strong> <strong>tools</strong><br />

Page 37


Aachen colloquium for 5-Axis precision machining<br />

Trends and challenges<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 38


Trends and challenges<br />

Kinematic measurement at once<br />

Dynamic data collection<br />

Online connection<br />

Thermal models for <strong>machine</strong>s<br />

MPE for volumetric accuracy<br />

Advanced kinematic error models<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 39


Thank you for your attention<br />

Vielen Dank für Ihre Aufmerksamkeit<br />

Grazie per la vostra attenzione<br />

<strong>AfM</strong> <strong>Technology</strong> Italia Srl<br />

Via Giotto 25 / Giotto Straße 25<br />

39100 Bolzano / Bozen / Italy<br />

Fon/ Fax: +39 0471 911953<br />

Mobile: +39 348 4221124<br />

www.afm-tec.it • info@afm-tec.it<br />

<strong>AfM</strong> <strong>Technology</strong> GmbH<br />

Gartenstraße 133<br />

73430 Aalen / Germany<br />

Fon: +49 (0)7361 889608-0<br />

Fax: +49 (0)7361 889608-99<br />

www.afm-tec.de • info@afm-tec.de<br />

© <strong>AfM</strong> <strong>Technology</strong> GmbH / Wolfram Meyer<br />

Page 40

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!