22.11.2014 Views

1. Types of waves 2. The wave equation of motion: y(x,t) = ymsin(kx ...

1. Types of waves 2. The wave equation of motion: y(x,t) = ymsin(kx ...

1. Types of waves 2. The wave equation of motion: y(x,t) = ymsin(kx ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

WAVES<br />

<strong>1.</strong> <strong>Types</strong> <strong>of</strong> <strong><strong>wave</strong>s</strong><br />

<strong>2.</strong> <strong>The</strong> <strong>wave</strong> <strong>equation</strong> <strong>of</strong> <strong>motion</strong>: y(x,t) = y m sin(<strong>kx</strong> – ωt + φ 0 )<br />

3. Traveling <strong><strong>wave</strong>s</strong><br />

- <strong><strong>wave</strong>s</strong> on a string<br />

- sound <strong><strong>wave</strong>s</strong><br />

4. <strong>wave</strong> power and intensity<br />

- the decibel system<br />

5. Interference in 1-D<br />

- beats<br />

- reflection and transmission<br />

- standing <strong><strong>wave</strong>s</strong> and resonance1<br />

6. Interference in 2-D<br />

7. <strong>The</strong> Doppler effect<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 1


Clicker question 1<br />

A simple harmonic <strong>wave</strong> is given by: y(x,t) = y m sin(<strong>kx</strong> – ωt + φ 0 )<br />

Consider the <strong>wave</strong> given by: y(x,t) = 2sin(πx – 2πt). Which <strong>of</strong><br />

the following functions correspond to this <strong>wave</strong>?<br />

a)<br />

2<br />

y<br />

x<br />

1<br />

2<br />

–2<br />

2<br />

–2<br />

4<br />

c)<br />

2<br />

y<br />

x<br />

b)<br />

1<br />

y<br />

x<br />

d)<br />

1<br />

y<br />

x<br />

–1<br />

2<br />

4<br />

–1<br />

π<br />

2π<br />

T = 2π/ω<br />

λ = 2π/k<br />

2<br />

–2<br />

4<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 2<br />

e)<br />

2<br />

y<br />

x


A simple harmonic <strong>wave</strong> is given by: y(x,t) = y m sin(<strong>kx</strong> – ωt + φ 0 )<br />

Consider the <strong>wave</strong> given by: y(x,t) = 2sin(πx – 2πt). Which <strong>of</strong><br />

the following functions correspond to this <strong>wave</strong>?<br />

a)<br />

2<br />

y<br />

Clicker question 1<br />

x<br />

1<br />

–2<br />

2<br />

2<br />

–2<br />

4<br />

c)<br />

2<br />

y<br />

x<br />

b)<br />

1<br />

y<br />

x<br />

d)<br />

1<br />

y<br />

x<br />

–1<br />

2<br />

4<br />

–1<br />

π<br />

2π<br />

T = 2π/ω<br />

λ = 2π/k<br />

2<br />

–2<br />

4<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 3<br />

e)<br />

2<br />

y<br />

x


What is the phase difference between a crest in a<br />

<strong>wave</strong>, and the adjacent trough?<br />

a) 0<br />

b) π/4<br />

c) π/2<br />

d) π<br />

e) 3π/2<br />

f) 2π<br />

Clicker question 2<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 4


Clicker question 2<br />

What is the phase difference between a crest in a<br />

<strong>wave</strong>, and the adjacent trough?<br />

a) 0<br />

y<br />

b) π/4<br />

c) π/2<br />

d) π<br />

0<br />

π/2<br />

π<br />

3π/2<br />

5π/2<br />

2π<br />

7π/2<br />

3π<br />

9π/2 φ = <strong>kx</strong><br />

4π<br />

e) 3π/2<br />

f) 2π<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 5


Clicker question 3<br />

What is the frequency <strong>of</strong> this travelling <strong>wave</strong>?<br />

a) 0.2 Hz<br />

b) 2 Hz<br />

c) 5 Hz<br />

d) 10 Hz<br />

e) 500 Hz<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 6


Clicker question 3<br />

What is the frequency <strong>of</strong> this travelling <strong>wave</strong>?<br />

a) 0.2 Hz<br />

b) 2 Hz<br />

c) 5 Hz<br />

d) 10 Hz<br />

e) 500 Hz<br />

v = fλ; λ = 10 m; f = v/λ = 5 Hz<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 7


Wavefronts<br />

Plane <strong><strong>wave</strong>s</strong> (1-D)<br />

Spherical <strong><strong>wave</strong>s</strong> (3-D)<br />

A<br />

r<br />

source<br />

Plane <strong><strong>wave</strong>s</strong> don’t spread,<br />

and the intensity, I = P/A,<br />

remains constant.<br />

Concentric spherical <strong><strong>wave</strong>s</strong> spread<br />

out over ever-larger area, A = 4πr 2 .<br />

With the same power, P, spread out<br />

over each sphere, the intensity, I, is:<br />

P P<br />

I =<br />

A<br />

=<br />

4πr 2 ⇒ I ∝ r –2<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 8


“Yardsticks” for the dB system<br />

β = 10 log(I/I 0 ) decibels (dB)<br />

threshold <strong>of</strong> human hearing<br />

rustling leaves<br />

conversation<br />

jack hammer<br />

rock concert<br />

threshold <strong>of</strong> pain<br />

jet engine<br />

10 log(I 0 /I 0 ) = 10 log(1) = 0 dB<br />

10 dB<br />

60 dB<br />

90 dB<br />

110 dB<br />

120 dB<br />

130 dB (can cause the ear to<br />

bleed)<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 9


Wave Interference<br />

<strong><strong>wave</strong>s</strong> approach…<br />

<strong>wave</strong> interference<br />

begins…<br />

constructive interference: crests<br />

and troughs <strong>of</strong> <strong><strong>wave</strong>s</strong> coincide<br />

maximum <strong>wave</strong><br />

interference…<br />

<strong>wave</strong> interference<br />

ends…<br />

<strong><strong>wave</strong>s</strong> recede as<br />

though nothing<br />

happened.<br />

destructive interference: crests <strong>of</strong><br />

one <strong>wave</strong> coincides with troughs<br />

<strong>of</strong> the other<br />

complete destructive interference:<br />

amplitudes <strong>of</strong> <strong><strong>wave</strong>s</strong> are also the<br />

same.<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 10


Beats (Fig. 21-31, Knight)<br />

y r<br />

T = 2π/ω<br />

T = 2π/ω<br />

Note that there are two “beats” in each period, T’.<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 11


Reflection and Transmission<br />

reflection, free end<br />

reflection, fixed end<br />

transmission, heavy → light<br />

transmission, light → heavy<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 12


Standing Waves<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 13


Clicker question 4<br />

Two loud speakers emit <strong><strong>wave</strong>s</strong> with λ = <strong>2.</strong>0 m. Speaker 2 is<br />

<strong>1.</strong>0 m to the right <strong>of</strong> speaker <strong>1.</strong> What, if anything, must be<br />

done to speaker 1 to cause constructive interference between<br />

the two <strong><strong>wave</strong>s</strong>?<br />

a) move it <strong>1.</strong>0 m to the right<br />

b) move it 0.5 m to the right<br />

c) move it 0.5 m to the left<br />

d) move it <strong>1.</strong>0 m to the left<br />

e) nothing; there is already<br />

perfect constructive interference<br />

between the two <strong><strong>wave</strong>s</strong><br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 14


Clicker question 4<br />

Two loud speakers emit <strong><strong>wave</strong>s</strong> with λ = <strong>2.</strong>0 m. Speaker 2 is<br />

<strong>1.</strong>0 m to the right <strong>of</strong> speaker <strong>1.</strong> What, if anything, must be<br />

done to speaker 1 to cause constructive interference between<br />

the two <strong><strong>wave</strong>s</strong>?<br />

a) move it <strong>1.</strong>0 m to the right<br />

b) move it 0.5 m to the right<br />

c) move it 0.5 m to the left<br />

d) move it <strong>1.</strong>0 m to the left<br />

Remember, you must consider<br />

both the shift and the phase<br />

e) nothing; there is already<br />

perfect constructive interference<br />

between the two <strong><strong>wave</strong>s</strong><br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 15


Clicker question 5<br />

Two sources <strong>of</strong> sound <strong><strong>wave</strong>s</strong> beat at 3 Hz. It is known that<br />

the frequency <strong>of</strong> one source is 610 Hz. <strong>The</strong>refore, the<br />

frequency <strong>of</strong> the other source must be:<br />

a) 604 Hz b) 607 Hz c) 613 Hz d) 616 Hz<br />

e) either b) or c) f) either a) or d)<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 16


Clicker question 5<br />

Two sources <strong>of</strong> sound <strong><strong>wave</strong>s</strong> beat at 3 Hz. It is known that<br />

the frequency <strong>of</strong> one source is 610 Hz. <strong>The</strong>refore, the<br />

frequency <strong>of</strong> the other source must be:<br />

a) 604 Hz b) 607 Hz c) 613 Hz d) 616 Hz<br />

e) either b) or c) f) either a) or d)<br />

f beat = f 2 – f 1 , the difference in the two frequencies.<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 17


Clicker question 6<br />

A standing <strong>wave</strong> vibrates as shown to<br />

the right. If the tension is quadrupled<br />

while keeping the frequency and length<br />

<strong>of</strong> string constant, which standing <strong>wave</strong><br />

pattern is produced?<br />

L<br />

a) b) c)<br />

no standing <strong>wave</strong><br />

for these conditions<br />

v = √T/µ = fλ<br />

d) e)<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 18


Clicker question 6<br />

A standing <strong>wave</strong> vibrates as shown to<br />

the right. If the tension is quadrupled<br />

while keeping the frequency and length<br />

<strong>of</strong> string constant, which standing <strong>wave</strong><br />

pattern is produced?<br />

L<br />

a) b) c)<br />

v = √T/µ = fλ<br />

⇒ λ ∝ √T<br />

no standing <strong>wave</strong><br />

for these conditions<br />

d) e)<br />

⇒ if T quadruples, λ<br />

doubles, and only one<br />

loop can fit inside L<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 19


Resonance (in pipes)<br />

Figure 2<strong>1.</strong>15, page 657, Knight<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 20


Wave Interference in 2-D<br />

Example problem<br />

λ<br />

S 1<br />

S 1<br />

r 1<br />

r 2<br />

S 2<br />

v<br />

d<br />

S 2<br />

r 1<br />

y<br />

“beach”<br />

“breakwater”<br />

r 2<br />

L<br />

lines <strong>of</strong> antinodes joins points <strong>of</strong> constructive<br />

interference (maximum amplitude)<br />

lines <strong>of</strong> nodes joins points <strong>of</strong> destructive<br />

interference (minimum amplitude)<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 21


Wave Interference in 2-D<br />

Example problem<br />

λ<br />

S 1<br />

v<br />

d<br />

S 2<br />

r 1<br />

y<br />

“beach”<br />

“breakwater”<br />

r 2<br />

L<br />

lines <strong>of</strong> antinodes joins points <strong>of</strong> constructive<br />

interference (maximum amplitude)<br />

lines <strong>of</strong> nodes joins points <strong>of</strong> destructive<br />

interference (minimum amplitude)<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 22


Wave Interference in 2-D<br />

Example problem<br />

λ<br />

S 1<br />

v<br />

d<br />

S 2<br />

r 1<br />

y<br />

“beach”<br />

“breakwater”<br />

r 2<br />

L<br />

lines <strong>of</strong> antinodes joins points <strong>of</strong> constructive<br />

interference (maximum amplitude)<br />

lines <strong>of</strong> nodes joins points <strong>of</strong> destructive<br />

interference (minimum amplitude)<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 23


Doppler Shift<br />

W 1<br />

W 6<br />

v S = 0<br />

S<br />

λ<br />

v D = 0<br />

D<br />

Nλ = c s ∆t<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 24


Doppler Shift<br />

W 1<br />

W 6<br />

S 1<br />

S 6<br />

v S<br />

S<br />

λ<br />

v D = 0<br />

D<br />

v S ∆t<br />

Nλ = (c s – v S )∆t<br />

Nλ = c s ∆t<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 25


Doppler Shift<br />

And did you hear the one about the rumoured (and fallacious) transcript <strong>of</strong> a<br />

conversation between US and Canadian authorities <strong>of</strong>f the coast <strong>of</strong><br />

Newfoundland…<br />

Canadians: Please divert your course 15 degrees south to avoid a collision.<br />

Americans: Recommend you divert your course 15 degrees north to avoid a collision.<br />

C: Negative. You will have to divert your course 15 degrees to the south to avoid a collision.<br />

A: This is the captain <strong>of</strong> a US Navy ship. I say again, divert your course.<br />

C: No sir, I say again, you will have to divert your course to avoid a collision.<br />

A: This is the aircraft carrier USS Lincoln, the second largest ship in the<br />

United States’ Atlantic fleet. We are accompanied by three destroyers, three<br />

cruisers, and numerous support vessels. I demand that you change your<br />

course by 15 degrees north. I say again, that’s one-five degrees north, or<br />

counter-measures will be undertaken to ensure the safety <strong>of</strong> this ship.<br />

C: This is a lighthouse. Your call.<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 26


Clicker question 7<br />

Two speakers are in phase and emit equal-amplitude sound<br />

<strong><strong>wave</strong>s</strong> with the same <strong>wave</strong>length <strong>of</strong> <strong>1.</strong>0 m. <strong>The</strong> interference<br />

<strong>of</strong> the two sound <strong><strong>wave</strong>s</strong> at point P can best be described as:<br />

P<br />

a) perfect constructive<br />

interference<br />

b) partial constructive<br />

interference<br />

c) partial destructive<br />

interference<br />

d) perfect destructive<br />

interference<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 27


Clicker question 7<br />

Two speakers are in phase and emit equal-amplitude sound<br />

<strong><strong>wave</strong>s</strong> with the same <strong>wave</strong>length <strong>of</strong> <strong>1.</strong>0 m. <strong>The</strong> interference<br />

<strong>of</strong> the two sound <strong><strong>wave</strong>s</strong> at point P can best be described as:<br />

P<br />

a) perfect constructive<br />

interference<br />

b) partial constructive<br />

interference<br />

c) partial destructive<br />

interference<br />

d) perfect destructive<br />

interference<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 28


Clicker question 8<br />

A source <strong>of</strong> sound, S, moves to the right as shown. In its<br />

own frame <strong>of</strong> reference, it emits a sound at frequency f 0 .<br />

Compare the frequencies that Amy and Zack hear.<br />

S<br />

a) f Amy < f 0 < f Zack b) f Amy > f 0 < f Zack<br />

c) f Amy > f 0 > f Zack d) f Amy = f 0 < f Zack<br />

e) f Amy = f 0 > f Zack f) f Amy = f 0 = f Zack<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 29


Clicker question 8<br />

A source <strong>of</strong> sound, S, moves to the right as shown. In its<br />

own frame <strong>of</strong> reference, it emits a sound at frequency f 0 .<br />

Compare the frequencies that Amy and Zack hear.<br />

S<br />

a) f Amy < f 0 < f Zack b) f Amy > f 0 < f Zack<br />

c) f Amy > f 0 > f Zack d) f Amy = f 0 < f Zack<br />

e) f Amy = f 0 > f Zack f) f Amy = f 0 = f Zack<br />

PHYS 1101, Winter 2009, Pr<strong>of</strong>. Clarke 30

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!