22.11.2014 Views

Boltzmann Transport Equation - COMSOL.com

Boltzmann Transport Equation - COMSOL.com

Boltzmann Transport Equation - COMSOL.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Presented at the <strong>COMSOL</strong> Conference 2009 Boston<br />

Nanoscale Heat Transfer using<br />

Phonon <strong>Boltzmann</strong> <strong>Transport</strong> <strong>Equation</strong><br />

Sangwook Sihn<br />

Air Force Research Laboratory, Materials and Manufacturing<br />

Directorate, AFRL/RX, Wright-Patterson AFB, OH, 45433<br />

University of Dayton Research Institute, Dayton, OH<br />

email : sangwook.sihn@udri.udayton.edu<br />

Ajit K. Roy<br />

Air Force Research Laboratory, Wright-Patterson AFB, OH<br />

2009 <strong>COMSOL</strong> Conference, Boston, MA<br />

October 8-10, 2009


Outline<br />

• Background information.<br />

• Description of phonon <strong>Boltzmann</strong> transport equation (BTE).<br />

• Modeling and solution procedure of BTE using <strong>COMSOL</strong>.<br />

• Results<br />

– Steady-state and transient problems.<br />

– Issues of refinement in spatial and angular domains.<br />

• Summary and conclusions.<br />

2


Fourier <strong>Equation</strong> (FE)<br />

• For last two centuries, heat conduction has been modeled by Fourier Eq (FE).<br />

∂T<br />

– Conservation of energy: ρc = −∇ ⋅q<br />

∂t<br />

Diffusive<br />

– Fourier’s linear approximation of heat flux: q = −k∇T L >> Λ T<br />

‣<br />

T 2<br />

1 ∂<br />

= ∇<br />

2 T<br />

α ∂t<br />

x<br />

• Parabolic equation —> Diffusive nature of heat transport. T 1<br />

• Heat is effectively transferred between localized regions through sufficient<br />

scattering events of phonons within medium.<br />

• Does not hold when number of scattering is negligible.<br />

– e.g., mean free path ~ device size (chip-package level).<br />

– Boundary scattering at interfaces causing thermal resistance.<br />

• Admits infinite speed of heat transport —> Contradict with theory of relativity.<br />

L<br />

‣ Fourier <strong>Equation</strong> cannot be used for small time and spatial scales.<br />

3


Hyperbolic Heat Conduction <strong>Equation</strong> (HHCE)<br />

• Resolve the issue of the Fourier equation with the infinite speed of heat carrier.<br />

1<br />

∂<br />

2<br />

‣<br />

2<br />

C ∂t<br />

T<br />

2<br />

1 ∂T<br />

+<br />

α ∂t<br />

= ∇<br />

– Definition of heat flux:<br />

2<br />

T<br />

∂q<br />

τ<br />

o<br />

+ q = −k∇T<br />

, ( τ o<br />

: relaxation time)<br />

∂t<br />

• Hyperbolic equation —> Wave nature of heat transport.<br />

• Called as Cattaneo equation or Telegraph equation.<br />

• Finite speed of heat carriers.<br />

• Ad hoc approximation of heat flux definition.<br />

• Violates 2 nd law of thermodynamics.<br />

– If heat source varies faster than speed of sound, heat would appear to be moving from<br />

cold to hot.<br />

( C<br />

2<br />

= α<br />

τ o<br />

)<br />

‣ HHCE: could be used for short time scale, but not for short spatial scale.<br />

4


Small Scale Heat <strong>Transport</strong> (Time & Space)<br />

• Fourier <strong>Equation</strong> cannot be used for small time and spatial scales.<br />

• HHCE: could be used for short time scale, but not for short spatial scale.<br />

• Needs equations and methods for small scale simulation in terms of both<br />

time and space.<br />

– Molecular dynamics simulation.<br />

• Accurate method.<br />

• Computationally expensive.<br />

• Suitable for systems having a few atomic layers or several thousands of atoms.<br />

• Not suitable for device-level thermal analysis.<br />

– <strong>Boltzmann</strong> <strong>Transport</strong> <strong>Equation</strong> (BTE).<br />

– Ballistic-Diffusive <strong>Equation</strong> (BDE).<br />

• Similar to Cattaneo Eq. (HHCE) with a source term.<br />

• Derived from BTE.<br />

• Good approximation of BTE without internal heat source, disturbance, etc.<br />

5


<strong>Boltzmann</strong> <strong>Transport</strong> <strong>Equation</strong> (BTE)<br />

• BTE: also called as equation of phonon radiative transfer (EPRT).<br />

• <strong>Equation</strong> for phonon distribution function:<br />

∂f<br />

∂t<br />

+ v ⋅∇f<br />

• Can predict ballistic nature of heat transfer.<br />

• Neglects wave-like behaviors of phonon.<br />

– Valid for structures larger than wavelength of phonons (~ 1 nm @ RT).<br />

• Solution methods:<br />

⎛ ∂f<br />

⎞<br />

= ⎜ ⎟<br />

⎝ ∂t<br />

⎠<br />

scat<br />

– Deterministic: discrete ordinates method, spherical harmonics method.<br />

– Statistical: Monte Carlo.<br />

• Much more efficient than MD.<br />

f o<br />

− f<br />

τ<br />

• Agrees well with experimental data.<br />

≈<br />

o<br />

L


Details of <strong>Boltzmann</strong> <strong>Transport</strong> <strong>Equation</strong> (BTE)<br />

• Phonon intensity:<br />

Iω ( t,<br />

v,<br />

r)<br />

= v ωf<br />

( t,<br />

v,<br />

r)<br />

D(<br />

ω) / 4π<br />

• BTE be<strong>com</strong>es EPRT:<br />

∂I<br />

∂t<br />

ω<br />

+ v ⋅∇I<br />

ω<br />

=<br />

I<br />

ω o<br />

τ<br />

− I<br />

o<br />

ω<br />

,<br />

Iω<br />

o<br />

=<br />

1<br />

∫<br />

I<br />

ω<br />

4π<br />

Ω= 4π<br />

dΩ<br />

*Equilibrium phonon intensity<br />

determined by Bose-Einstein statistics<br />

• For 1-D,<br />

∂I<br />

∂t<br />

ω<br />

∂I<br />

+ v cosθ<br />

∂x<br />

ω<br />

=<br />

I<br />

ω o<br />

τ<br />

− I<br />

o<br />

ω<br />

x<br />

θ<br />

Ι ω<br />

L<br />

• For each angle (θ ), solve non-linear equation with iterations for<br />

– Solving for Ι ω .<br />

– Updating Ι ωο .<br />

• Heat flux:<br />

q<br />

=<br />

Ω=<br />

∫∫<br />

ω<br />

D<br />

Iω<br />

cosθ dω<br />

dΩ<br />

4π<br />

0<br />

• Internal energy:<br />

u<br />

1 ω D<br />

( ≈ cT ) = ∫ ω<br />

f D(<br />

ω)<br />

dω<br />

dΩ = ∫ ∫<br />

4<br />

π<br />

0<br />

Ω= 4π<br />

I<br />

v<br />

ω<br />

dω<br />

dΩ<br />

7


Modeling & Solution Procedure using <strong>COMSOL</strong><br />

∂I<br />

∂t<br />

∂I<br />

+ v cosθ<br />

∂x<br />

=<br />

I o<br />

− I<br />

τ<br />

o<br />

• Use a built-in feature of <strong>COMSOL</strong>, “Coefficient Form PDEs”.<br />

• The spatial domain is discretized using FE mesh.<br />

• The angular (momentum) domain is discretized using Gaussian quadrature<br />

points.<br />

• For each angle (θ ), set up the BTE with corresponding coefficients (µ i =cosθ i )<br />

and BCs (Neumann vs. Dirichlet).<br />

• Calculate equilibrium phonon intensity (I o ) by numerical integration of (I i ) using<br />

Gaussian quadratures.<br />

• Solve.<br />

– Direct solver (UMFPACK).<br />

– Max. BDF order = 1.<br />

• Postprocess and visualize the results.<br />

8


Details of Solution Procedure<br />

• Original 1-D BTE:<br />

∂I<br />

∂t<br />

∂I<br />

I −<br />

+ µ = o<br />

I<br />

v<br />

, ( µ = cosθ<br />

)<br />

∂x<br />

τ<br />

o<br />

• Nondimensionalize with<br />

t<br />

*<br />

t x<br />

= , η = ,<br />

τ L<br />

o<br />

Kn =<br />

Λ<br />

L<br />

∂I<br />

∂t<br />

*<br />

∂I<br />

+ Kn µ + I<br />

∂η<br />

=<br />

I o<br />

• Split into (+) and (-) directions:<br />

• Discretize angular space at<br />

Gaussian quadrature points:<br />

+<br />

+<br />

⎧∂Ii<br />

∂Ii<br />

⎪ + Kn µ +<br />

*<br />

i<br />

I<br />

⎪<br />

∂t<br />

∂η<br />

⎪<br />

−<br />

−<br />

∂Ii<br />

∂Ii<br />

⎨ + Kn µ + I<br />

*<br />

i<br />

⎪ ∂t<br />

∂η<br />

⎪<br />

+<br />

⎪Dirichlet BCs : Ii<br />

⎩<br />

+<br />

i<br />

−<br />

i<br />

η = 0<br />

= I<br />

= I<br />

o<br />

o<br />

,<br />

,<br />

σ<br />

= T<br />

π<br />

4<br />

( µ > 0)<br />

( µ < 0)<br />

η = 0<br />

i<br />

i<br />

,<br />

I<br />

−<br />

i<br />

η = 1<br />

σ<br />

= T<br />

π<br />

4<br />

η = 1<br />

• After FE run, postprocess:<br />

I<br />

o<br />

( t,<br />

η)<br />

=<br />

1<br />

2<br />

⎡<br />

⎢<br />

⎣<br />

⎡<br />

q(<br />

t,<br />

η)<br />

= 2π<br />

⎢<br />

⎣<br />

n<br />

gp<br />

∑<br />

i=<br />

1<br />

n<br />

2<br />

gp<br />

∑<br />

i=<br />

1<br />

w I<br />

2<br />

i<br />

i<br />

+<br />

i<br />

+<br />

i<br />

+<br />

w µ I<br />

n<br />

+<br />

i<br />

gp<br />

∑<br />

i=<br />

1<br />

+<br />

2<br />

w I<br />

n<br />

i<br />

gp<br />

∑<br />

i=<br />

1<br />

−<br />

i<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

w µ I<br />

i<br />

−<br />

i<br />

−<br />

i<br />

⎤<br />

⎥<br />

⎦<br />

9


Coefficient Form for BTE<br />

(60 Finite elements, 16 Gaussian Points)<br />

10


Steady-State Problem: Analytic vs. Numerical Solutions<br />

Emissive power ~ Temperature<br />

Gradient<br />

e<br />

*<br />

0<br />

( η)<br />

=<br />

e<br />

( η)<br />

− J<br />

o<br />

+<br />

J<br />

q1<br />

− J<br />

−<br />

q2<br />

−<br />

q2<br />

* *<br />

*<br />

∆e0 = e0<br />

( η = 0) − e0<br />

( η = 1)<br />

Nondim. emissive power, eo*<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Kn =<br />

Λ<br />

L<br />

Small temperature gradient<br />

at smaller scale<br />

Kn=0.1<br />

Kn=1<br />

Kn=10<br />

Kn=100<br />

Gradient of nondim. emissive power,<br />

∆eo*<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Analytic<br />

Numerical (ngp=16)<br />

Numerical (ngp=128)<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

0<br />

0.1 1 10 100<br />

Knudsen number, Kn=Λ/L<br />

11


Steady-State Problem: Analytic vs. Numerical Solutions<br />

Heat flux<br />

Thermal conductivity<br />

*<br />

* q<br />

*<br />

q =<br />

k =<br />

+ −<br />

*<br />

J q 1<br />

− J q<br />

∆e 2<br />

o<br />

q<br />

L<br />

Nondimensional heat flux, q*<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

Analytic<br />

Numerical (ngp=16)<br />

Numerical (ngp=128)<br />

0.1 1 10 100<br />

Knudsen number, Kn=Λ/L<br />

k* = q*L/∆eo*<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Analytic<br />

Numerical (ngp=16)<br />

Numerical (ngp=128)<br />

0.1 1 10 100<br />

Knudsen number, Kn=Λ/L<br />

12


Transient Problem: Effect of Spatial Refinement<br />

(More Finite Elements)<br />

• Refine spatial (x-) direction with n finite elements (n=15, 60, 120).<br />

• Divide angular direction with 16 Gaussian points (ngp=16).<br />

Nondimensional temperature, θ<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Temperature @ t*=0.1<br />

15 elements<br />

60 elements<br />

120 elements<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

Nondimensional temperature, θ<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

15 elements<br />

60 elements<br />

120 elements<br />

Ray effect.<br />

0 0.1 0.2 0.3<br />

Nondimensional coordinate, η<br />

• Spatial refinement leads to a smoother<br />

solution.<br />

• However, it does not solve ray effect.<br />

13


Transient Problem: Effect of Angular Refinement<br />

(More Gaussian Points)<br />

• Refine spatial (x-) direction with 240 FE elements.<br />

• Divide angular direction with ngp Gaussian points (ngp=4,8,16,32,64,128).<br />

Nondimensional temperature, θ<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

Temperature @ t*=0.1<br />

ngp=4<br />

ngp=8<br />

ngp=16<br />

ngp=32<br />

ngp=64<br />

ngp=128<br />

Nondimensional temperature, θ<br />

0.55<br />

0.5<br />

0.45<br />

0.4<br />

0.35<br />

ngp=4<br />

ngp=8<br />

ngp=16<br />

ngp=32<br />

ngp=64<br />

ngp=128<br />

0 0.1 0.2 0.3<br />

Nondimensional coordinate, η<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

• Angular refinement resolve ray effect.<br />

• Spatial and angular refinements are<br />

independent.<br />

• Highly refined spatial mesh with coarse<br />

angular mesh alleviates solution.<br />

14


Results of BTE<br />

(Temperature & Heat Flux Distributions with Time Increase)<br />

Nondimensional temperature, θ<br />

Nondimensional heat flux, q*<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.4<br />

0.32<br />

0.24<br />

0.16<br />

0.08<br />

t*=0.01<br />

t*=0.1<br />

t*=1<br />

t*=10<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

t*=0.01<br />

t*=0.1<br />

t*=1<br />

t*=10<br />

Nondimensional temperature, θ<br />

Nondimensional heat flux, q*<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.4<br />

0.32<br />

0.24<br />

0.16<br />

0.08<br />

t*=0.01<br />

t*=0.1<br />

t*=1<br />

t*=10<br />

Kn=10 Kn=1 Kn=0.1<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

t*=0.01<br />

t*=0.1<br />

t*=1<br />

t*=10<br />

Nondimensional temperature, θ<br />

Nondimensional heat flux, q*<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0.4<br />

0.32<br />

0.24<br />

0.16<br />

0.08<br />

t*=0.1<br />

t*=1<br />

t*=10<br />

t*=100<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

t*=0.1<br />

t*=1<br />

t*=10<br />

t*=100<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

15


Comparisons of FE, HHTC, BDE vs. BTE<br />

(Temperature & Heat Flux Distributions for 3 Kn)<br />

Nondimensional temperature, θ<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

BTE<br />

BDE<br />

Fourier<br />

Cattaneo<br />

Kn=10<br />

t*=1<br />

Nondimensional temperature, θ<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

BTE<br />

BDE<br />

Fourier<br />

Cattaneo<br />

Kn=1<br />

t*=1<br />

Nondimensional temperature, θ<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

BTE<br />

BDE<br />

Fourier<br />

Cattaneo<br />

Kn=0.1<br />

t*=10<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

0<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

Nondimensional heat flux, q*<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

BTE<br />

BDE<br />

Fourier<br />

Cattaneo<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

Nondimensional heat flux, q*<br />

0.4<br />

0.32<br />

0.24<br />

0.16<br />

0.08<br />

0<br />

BTE<br />

BDE<br />

Fourier<br />

Cattaneo<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

Nondimensional heat flux, q*<br />

0.12<br />

0.09<br />

0.06<br />

0.03<br />

0<br />

BTE<br />

BDE<br />

Fourier<br />

Cattaneo<br />

0 0.2 0.4 0.6 0.8 1<br />

Nondimensional coordinate, η<br />

16


Summary and Conclusions<br />

• Nanoscale simulation is conducted for phonon heat transfer using<br />

<strong>Boltzmann</strong> transport equation.<br />

– Phonons for dielectric, thermoelectric, semiconductor materials.<br />

– Electrons for metals.<br />

– Gas molecules for rarefied gas states.<br />

• Numerical solution of BTE has been obtained for 1-D problem (both<br />

steady-state and transient problems).<br />

• Temperature and heat flux distributions from the nanoscale simulation<br />

yield <strong>com</strong>pletely different results from the solutions from Fourier and<br />

Cattaneo equations.<br />

– Thermal conductivity will be different, too.<br />

17

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!