20.01.2015 Views

Modeling Heat and Mass Transfer in Bread during ... - COMSOL.com

Modeling Heat and Mass Transfer in Bread during ... - COMSOL.com

Modeling Heat and Mass Transfer in Bread during ... - COMSOL.com

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Excerpt from the Proceed<strong>in</strong>gs of the <strong>COMSOL</strong> Conference 2010 Paris<br />

<strong>Model<strong>in</strong>g</strong> <strong>Heat</strong> <strong>and</strong> <strong>Mass</strong> <strong>Transfer</strong> <strong>in</strong> <strong>Bread</strong> dur<strong>in</strong>g Bak<strong>in</strong>g<br />

V. Nicolas 1,2* , P. Salagnac 2 , P. Glouannec 1 , V. Jury 3 , L. Boillereaux 3 , J.P. Ploteau 1<br />

1 Laboratoire d’Ingénierie des MATériaux de Bretagne – Equipe Thermique et Energétique,<br />

Université Européenne de Bretagne,<br />

2 Laboratoire d’Etudes des Phénomènes de <strong>Transfer</strong>t et de l’Instantanéité : Agro-<strong>in</strong>dustrie et<br />

Bâtiment, Université de La Rochelle,<br />

3 Laboratoire de Génie des Procédés, Environnement, Agroalimentaire, ENITIAA.<br />

*Correspond<strong>in</strong>g author: Université de Bretagne-Sud, rue de Sa<strong>in</strong>t Maudé – BP 92116, 56321 Lorient<br />

Cedex, France, v<strong>in</strong>cent.nicolas@univ-ubs.fr<br />

Abstract: In this paper, we present a first<br />

model carried out with Comsol Multiphysics®<br />

to model bread bak<strong>in</strong>g, consider<strong>in</strong>g heat <strong>and</strong><br />

mass transfer coupled with the phenomenon of<br />

swell<strong>in</strong>g. This model predicts the pressures,<br />

temperatures <strong>and</strong> water contents evolutions <strong>in</strong><br />

the dough for different energy requests. First<br />

results obta<strong>in</strong>ed are analyzed accord<strong>in</strong>g to<br />

various physical parameters <strong>in</strong> order to better<br />

apprehend <strong>in</strong>teractions between the various<br />

mechanisms <strong>in</strong> the porous matrix.<br />

Keywords: <strong>Bread</strong> bak<strong>in</strong>g, heat <strong>and</strong> mass<br />

transfer, model.<br />

1. Introduction<br />

With energy consumption close to<br />

300 000 tons-equivalent-oil per year, bread<br />

bak<strong>in</strong>g represents a non negligible part of the<br />

energy dem<strong>and</strong> of the French Food sector. An<br />

improvement of the energy efficiency of the<br />

oven would make it possible to reduce the<br />

energy request for this sector <strong>and</strong> consequently<br />

the CO 2 emissions. Before the optimization<br />

phase, it is necessary to evaluate the energy<br />

needs of the product. This stage needs an<br />

<strong>in</strong>creased knowledge <strong>and</strong> a model<strong>in</strong>g of the<br />

transfer mechanisms <strong>in</strong> the product, here, a<br />

porous medium: bread. <strong>Bread</strong> is a <strong>com</strong>plex<br />

medium <strong>in</strong> which occur of many physical<br />

phenomena dur<strong>in</strong>g bak<strong>in</strong>g: heat <strong>and</strong> mass<br />

transfers (CO 2 , liquid water, vapor water),<br />

swell<strong>in</strong>g with the formation of a porous<br />

structure <strong>and</strong> various physico-chemical<br />

reactions (gelat<strong>in</strong>ization, surface brown<strong>in</strong>g:<br />

Maillard reaction…).<br />

In this paper, we present physical model<br />

designed to describe mass <strong>and</strong> heat transfer<br />

with<strong>in</strong> the porous material dur<strong>in</strong>g bak<strong>in</strong>g. The<br />

second part describes the numerical model<br />

implemented <strong>and</strong> the simulated results<br />

obta<strong>in</strong>ed.<br />

Figure 1. <strong>Heat</strong> <strong>and</strong> mass phenomena <strong>in</strong> bread.<br />

2. Govern<strong>in</strong>g equations<br />

A mathematical model based on heat <strong>and</strong><br />

mass transfer <strong>in</strong> porous media is used to model<br />

the bak<strong>in</strong>g of bread. It is derived from mass<br />

balance of constituents <strong>in</strong> different phases:<br />

liquid water (l), water vapour (v), CO 2 gas<br />

(CO 2 ). The state variables are the temperature<br />

T, the water content W <strong>and</strong> the total gas<br />

pressure P g . This conservation-based approach<br />

was developed for dry<strong>in</strong>g theory by Whitaker<br />

[1] <strong>and</strong> Philip <strong>and</strong> De Vries [2] <strong>and</strong> used by<br />

another authors (Zhang et al. [3]).<br />

2.1. Hypothesis<br />

In this problem, the hypotheses used are:<br />

• medium is homogeneous,<br />

• local thermodynamic equilibrium is achieved,<br />

• liquid phase (l) is not <strong>com</strong>pressible: ρ l = cst,<br />

• the gaseous phase (g) consists of a perfect<br />

blend of gas: carbon dioxide (CO 2 ) <strong>and</strong><br />

vapour (v), whose equations read as follows:<br />

P M<br />

i j j<br />

ρ<br />

g<br />

= for j = ( v,<br />

CO2)<br />

with P = P + P<br />

g v CO2<br />

RT<br />

i i i<br />

<strong>and</strong> ρ = ρ + ρ (i: <strong>in</strong>tr<strong>in</strong>sic)<br />

g v CO2<br />

• radiation <strong>and</strong> convection are negligible<br />

with<strong>in</strong> the material,<br />

• moisture content is the fraction between<br />

liquid water mass <strong>and</strong> dry solid mass:<br />

ml<br />

W = .<br />

m<br />

s


2.2. <strong>Mass</strong> conservation<br />

Liquid water phase<br />

∂ρ r<br />

l<br />

r r<br />

+ ∇ ⋅ nl<br />

= −K<br />

∂t<br />

∂ρ r<br />

v<br />

r r<br />

Vapour phase<br />

+ ∇ ⋅ nv<br />

= K<br />

∂t<br />

∂ρ<br />

r<br />

CO<br />

CO 2 phase<br />

r<br />

2<br />

+ ∇ ⋅ nCO<br />

= 0<br />

2<br />

∂t<br />

These equations show the matter flows,<br />

which are derived from the Fick’s law for<br />

diffusion <strong>and</strong> by Darcy’s generalised equations<br />

giv<strong>in</strong>g the mean filtration velocity fields of the<br />

liquid <strong>and</strong> gaseous phases.<br />

Liquid water flux<br />

r<br />

n<br />

l<br />

= D<br />

W<br />

l<br />

r<br />

∇W<br />

Liquid water diffusion <strong>in</strong> bread is only due<br />

to capillary diffusivity. The measurement of<br />

capillary pressure is difficult to obta<strong>in</strong>, so we<br />

have used an expression of the diffusion<br />

coefficient obta<strong>in</strong>ed by Ni et al. [4], with the<br />

parameters of Zhang <strong>and</strong> Datta [5].<br />

W<br />

Dl = Ck<br />

2<br />

ρs<br />

exp( − 2.8 + 2W<br />

)ε<br />

with ε, the porosity <strong>and</strong> C k2 = 10 -6<br />

coefficient.<br />

Vapor flux<br />

r kk<br />

i rg<br />

nv<br />

= −ρ<br />

v<br />

µ<br />

g<br />

r<br />

i<br />

r r<br />

i<br />

( ∇P<br />

)<br />

g<br />

− ρ<br />

gg<br />

− ρ<br />

gDeff<br />

∇ωv<br />

ω v be<strong>in</strong>g the mass fraction of the vapour <strong>in</strong> the<br />

gaseous phase, given by:<br />

CO 2 flux<br />

r<br />

n<br />

= −ρ<br />

kk<br />

m<br />

ω<br />

v<br />

=<br />

m<br />

v<br />

g<br />

r<br />

i<br />

r r<br />

i<br />

( ∇P<br />

)<br />

g<br />

− ρ<br />

gg<br />

− ρ<br />

gDeff<br />

∇ω<br />

2<br />

i rg<br />

CO2 CO2<br />

CO<br />

µ<br />

g<br />

Moisture content equation<br />

This equation is established by liquid<br />

water <strong>and</strong> vapour mass conservation equation<br />

sum.<br />

∂W<br />

r<br />

ρ<br />

s<br />

+ ∇ ⋅<br />

∂t<br />

⎛ ∂T<br />

∂W<br />

= −⎜<br />

β 1<br />

+ β 2<br />

⎝ ∂t<br />

∂t<br />

r r r<br />

W W<br />

T<br />

Pg<br />

[( Dl<br />

+ Dv<br />

) ∇W<br />

+ Dv<br />

∇T<br />

+ Dv<br />

∇Pg<br />

]<br />

⎞<br />

⎟<br />

⎠<br />

Terms with beta coefficient are obta<strong>in</strong>ed<br />

from vapor phase conservation equation. By<br />

a<br />

<strong>in</strong>clud<strong>in</strong>g the gradients of the state variables <strong>in</strong><br />

the expressions of mass flow, the diffusion<br />

coefficients appear (see appendix). This model<br />

is based on Salagnac et al. [6] developments.<br />

Energy conservation equation<br />

<strong>Heat</strong> transfer occurs <strong>in</strong> three forms:<br />

conduction, convection <strong>and</strong> latent heat moved<br />

outward by the vapor diffusion. The<br />

convective term is negligible <strong>com</strong>pared to the<br />

latent heat:<br />

∂T<br />

r r r r r<br />

ρ C<br />

p<br />

+ ρ<br />

gC<br />

p,<br />

gv<br />

g∇T<br />

= ∇ ⋅ ( λ∇T<br />

) − K Lv<br />

∂t<br />

with<br />

ρ = + <strong>and</strong> λ,<br />

C<br />

p<br />

ρ<br />

sC<br />

p, s<br />

+ ρlC<br />

p,<br />

l<br />

ρ<br />

gC<br />

p,<br />

g<br />

the effective thermal conductivity. The<br />

necessary energy for the water vaporisation is<br />

obta<strong>in</strong>ed by the product of the phase change<br />

rate K <strong>and</strong> the latent heat of vaporisation L v .<br />

The evaporation rate, K, is given by Zhang <strong>and</strong><br />

Datta [3] <strong>and</strong>, obta<strong>in</strong>s with the liquid water<br />

conservation equation:<br />

∂W<br />

r r<br />

W<br />

K = −ρ<br />

s<br />

+ ∇ ⋅( Dl<br />

∇W<br />

)<br />

∂t<br />

Gas pressure equation<br />

The equation for the total pressure of the<br />

gaseous phase P g is obta<strong>in</strong>ed from the read<strong>in</strong>gs<br />

of the mass balance on CO 2 .<br />

v r r r<br />

W<br />

T<br />

Pg<br />

⎡− ∇ ⋅( D ∇W<br />

+ D ∇T<br />

+ D ∇P<br />

) ⎤<br />

CO2<br />

CO2<br />

CO2<br />

g<br />

∂Pg<br />

1 ⎢<br />

⎥<br />

=<br />

∂t<br />

γ ⎢ ∂T<br />

∂W<br />

⎥<br />

3<br />

⎢<br />

−γ<br />

−γ<br />

1<br />

2<br />

⎣ ∂t<br />

∂t<br />

⎥<br />

⎦<br />

2.3. Boundaries conditions<br />

The boundaries conditions on air/bread<br />

<strong>in</strong>terface are for:<br />

<strong>Heat</strong> equation<br />

− r<br />

n ⋅ ( ∇<br />

r<br />

λ T ) = h ( T − T )<br />

air<br />

with h, the heat coefficient (convection <strong>and</strong><br />

radiation phenomena).<br />

Water content equation<br />

Evaporated mass flux is equal to the sum<br />

of liquid water <strong>and</strong> vapor water flux.<br />

r<br />

r<br />

W W<br />

− n ⋅ D + D ∇W<br />

= F<br />

by:<br />

F<br />

(<br />

l v<br />

)<br />

m<br />

Evaporated mass flux on surface is given<br />

m<br />

= k<br />

m<br />

⎛<br />

⎜<br />

Pt<br />

M<br />

⎝ RT<br />

v<br />

film<br />

⎞ ⎛ ⎛<br />

⎜<br />

Pv<br />

, surf<br />

− Pv<br />

⎟ln<br />

1+<br />

⎜<br />

⎜<br />

⎠ ⎝ ⎝ Pt<br />

− Pv<br />

,<br />

surf<br />

,<strong>in</strong>f<br />

⎞⎞<br />

⎟⎟<br />

⎟<br />

⎠⎠


Gas pressure equation<br />

Atmospheric pressure is considered on<br />

bread surface.<br />

P = P<br />

g atm<br />

3. Physical properties <strong>and</strong> parameters<br />

Physical properties are chosen for typical<br />

French bread.<br />

Vapor pressure <strong>and</strong> water activity<br />

Vapor pressure is obta<strong>in</strong>ed by an equilibrium<br />

approach.<br />

P = a P<br />

v<br />

The water activity (a w ) have been<br />

determ<strong>in</strong>ed by L<strong>in</strong>d <strong>and</strong> Rask [7], Van<strong>in</strong> [8],<br />

Jury [10], Zhang <strong>and</strong> Datta [5] with different<br />

models.<br />

Activity<br />

1<br />

0,9<br />

0,8<br />

0,7<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

w<br />

0 0,5 1 1,5<br />

vs<br />

Water content, kg/kg<br />

Osw<strong>in</strong>(Zhang)<br />

Van<strong>in</strong><br />

Osw<strong>in</strong> (Jury)<br />

GAB (Jury)<br />

Figure 2. Activity models for bread.<br />

The Osw<strong>in</strong> model fitted by Zhang <strong>and</strong><br />

Datta [5] is used.<br />

a w<br />

⎛<br />

⎜⎛<br />

=<br />

⎜<br />

⎜<br />

exp<br />

⎝<br />

⎝<br />

100W<br />

Thermal conductivity<br />

( − 0.0056T<br />

+ 5.5)<br />

⎞<br />

⎟<br />

⎠<br />

− 1<br />

0.38<br />

⎞<br />

+ 1<br />

⎟<br />

⎟<br />

⎠<br />

−1<br />

<strong>Heat</strong> transfer <strong>in</strong> the porous media is<br />

described by two phenomena, conduction <strong>and</strong><br />

evaporation-condensation. Two solutions are<br />

developed <strong>in</strong> bibliography, some authors use<br />

multiphase model of conductivity <strong>and</strong> others<br />

an experimental effective conductivity. In this<br />

paper, an effective conductivity, tak<strong>in</strong>g <strong>in</strong>to<br />

account evaporation-condensation <strong>and</strong><br />

conduction phenomena has been used. The<br />

values of thermal conductivity <strong>com</strong>e from<br />

experimental data of Jury et al. [10] <strong>and</strong> have<br />

been fitted by Purlis <strong>and</strong> Salvadori [11].<br />

⎧<br />

⎪<br />

λ = ⎨1+<br />

exp<br />

⎪<br />

⎩0.2<br />

0.9<br />

( − 0.1( T − 353.16)<br />

)<br />

+ 0.2 if T ≤ T<br />

if T > T<br />

Figure 3. Effective thermal conductivity.<br />

f<br />

f<br />

− ∆T<br />

+ ∆T<br />

Diffusivity of vapor water <strong>in</strong> CO 2 is given by:<br />

D<br />

eff<br />

= D<br />

vc<br />

[( 1−1.11S)<br />

ε ] 4 / 3<br />

Table 1: Input parameters.<br />

Parameters Values Units<br />

Initial moisture content, W 0 0.54 kg of water/kg of dry solid<br />

Initial temperature, T 0 27 °C<br />

Initial pressure, P g0 1.013 10 5 Pa<br />

Initial dough density, ρ<br />

0<br />

305.4 kg/m 3<br />

i<br />

Intr<strong>in</strong>sic density of solid matrix, ρ<br />

s<br />

705 kg/m 3<br />

Initial porosity 0.72 -<br />

Oven gas temperature, T air 190 °C<br />

heat transfer coefficient, h 10 W/(m 2 .K)<br />

Convective mass transfer coefficient, k m 0.01 m/s<br />

Vapor pressure <strong>in</strong> surround<strong>in</strong>g air, P v, <strong>in</strong>f 0 Pa<br />

Gas <strong>in</strong>tr<strong>in</strong>sic permeability, k 2.5 10 -12 m 2<br />

1−1.1S<br />

for S ≤ 0.9<br />

Gas relative permeability, k rg -<br />

0 for S > 0. 9<br />

St<strong>and</strong>ard b<strong>in</strong>ary diffusivity, D vc 2 10 -5 m 2 /s


<strong>Bread</strong> swell<strong>in</strong>g<br />

To simulate the volume expansion of the<br />

bread, different mechanical models exist (Zhang<br />

[13], Van<strong>in</strong> [8]). In first approximation, we<br />

<strong>in</strong>troduced <strong>in</strong>to the model a deformation of the<br />

bread <strong>com</strong><strong>in</strong>g from numerical results (Zhang<br />

[13]). In this case, the volume expansion is a<br />

function of time <strong>and</strong> is given by a radius<br />

expression:<br />

α<br />

( t)<br />

⎛V0 α(<br />

t)<br />

⎞<br />

R ( t)<br />

= ⎜ ⎟ with:<br />

⎝ π ⎠<br />

5<br />

4<br />

⎧<br />

⎫<br />

-4⎛<br />

t ⎞<br />

-3⎛<br />

t ⎞<br />

⎪- 210 ⎜ ⎟ + 510 ⎜ ⎟ ⎪<br />

⎪ ⎝ 60 ⎠ ⎝ 60 ⎠ ⎪<br />

⎪<br />

3 ⎪<br />

⎪<br />

-2⎛<br />

t ⎞<br />

- 4.4910 ⎜ ⎟ ⎪<br />

⎪ ⎝ 60 ⎠ ⎪<br />

⎪<br />

⎬ for t ≤ 360 s<br />

=<br />

2<br />

⎨<br />

-1⎛<br />

t ⎞ ⎪<br />

⎪+1.51710<br />

⎜ ⎟ ⎪<br />

⎪ ⎝ 60 ⎠ ⎪<br />

⎪<br />

-3⎛<br />

t ⎞<br />

⎪<br />

⎪+ 4.810 ⎜ ⎟ + 0.9968 ⎪<br />

⎪ ⎝ 60 ⎠<br />

⎭<br />

⎪<br />

⎩1.7132<br />

for t > 360 s<br />

4. Numerical model<br />

0.5<br />

equilibrium approach <strong>in</strong> <strong>com</strong>mercial software<br />

due to divergence of heat source term<br />

correspond<strong>in</strong>g to phase change. The choice of<br />

general form makes it possible to <strong>in</strong>troduce this<br />

approach.<br />

<strong>Heat</strong> source term has been modified to<br />

correspond to the PDE general form:<br />

∂T<br />

r r<br />

ρ C<br />

p<br />

+ ∇ ⋅<br />

l<br />

∂t<br />

r r<br />

W<br />

a ∂W<br />

− Dl<br />

∇W<br />

⋅∇Lv<br />

+ ρ<br />

s<br />

Lv<br />

∂t<br />

5. Results<br />

W<br />

( − λ∇T<br />

+ D L ∇W<br />

)<br />

v<br />

= −ρ<br />

C<br />

g<br />

r r<br />

⋅∇T<br />

p, gv g<br />

Simulation has been realised for a 15 m<strong>in</strong><br />

bak<strong>in</strong>g <strong>in</strong> an oven at 190°C. Simulated results are<br />

<strong>com</strong>pared with Zhang <strong>and</strong> Datta [13]<br />

experimental data.<br />

Figure 5 presents the evolution of<br />

temperature obta<strong>in</strong>ed <strong>in</strong> the center <strong>and</strong> at 1.5 mm<br />

of the surface.<br />

140<br />

120<br />

100<br />

r<br />

The numerical model was programmed with<br />

Comsol Multiphysics®. The geometry is 2D<br />

cyl<strong>in</strong>drical. The <strong>in</strong>itial radius of bread is<br />

36.5 mm. A mobile triangular mesh<strong>in</strong>g (ALE)<br />

with 548 elements is used.<br />

Temperature, °C<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Experimental surface<br />

Experimental Center<br />

Simulation surface<br />

Simulation center<br />

0 5 10 15<br />

Time, m<strong>in</strong><br />

Figure 5. Temperatures <strong>in</strong> bread.<br />

Figure 4. Geometry <strong>and</strong> mesh.<br />

The equations are simultaneously resolved<br />

with a free step time by the solver UMFPACK.<br />

A bak<strong>in</strong>g of 15 m<strong>in</strong> is calculated <strong>in</strong> 47 s. All<br />

equations are implemented with PDE<br />

formulations <strong>in</strong> general form time dependant:<br />

∂u<br />

d a<br />

+ ∇ ⋅ Γ = F <strong>in</strong>side doma<strong>in</strong><br />

∂t<br />

− n ⋅ Γ = G⎫<br />

⎬ on doma<strong>in</strong> boundary<br />

0 = R ⎭<br />

with u the variable correspond<strong>in</strong>g to T, W <strong>and</strong><br />

P g . Equations have to be identified <strong>in</strong> different<br />

PDE terms. It is difficult to implement an<br />

Temperature evolutions of numerical model<br />

are <strong>in</strong> good agreement with experimental data.<br />

The surface temperature <strong>in</strong>creases until the end<br />

of bak<strong>in</strong>g. At 8 m<strong>in</strong>, the slope break of the curve<br />

shows the phenomenon of evaporation. In the<br />

center of bread, the temperature <strong>in</strong>creases but<br />

stay under 100°C.<br />

Figure 6 presents the evolution of mean<br />

moisture content.<br />

Moisture content, kg/kg<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0 5 10 15<br />

Time, m<strong>in</strong><br />

Figure 6. Mean moisture content <strong>in</strong> bread.<br />

Moisture content evolution corresponds very<br />

well to experimental data. The quantity of liquid


water decreases almost l<strong>in</strong>early with time dur<strong>in</strong>g<br />

bak<strong>in</strong>g.<br />

Local moisture content, kg/kg<br />

0,60<br />

0,50<br />

0,40<br />

0,30<br />

0,20<br />

0,10<br />

0,00<br />

0 5 10 15<br />

Time, m<strong>in</strong><br />

Surface<br />

Figure 7. Local moisture content <strong>in</strong> bread.<br />

As for the local moisture contents, one<br />

notices a light <strong>in</strong>crease <strong>in</strong> moisture content <strong>in</strong> the<br />

center of the bread (dough) dur<strong>in</strong>g bak<strong>in</strong>g. This<br />

phenomenon is caused by the evaporationcondensation<br />

phenomenon <strong>in</strong> crumb. In surface<br />

(crust), moisture content decreases <strong>in</strong> few<br />

m<strong>in</strong>utes. This evolution corresponds well to<br />

typical bak<strong>in</strong>g evolution (Wagner [14]).<br />

6. Conclusion<br />

A mathematical model has been developed<br />

for bread bak<strong>in</strong>g. The numerical model has been<br />

<strong>com</strong>puted with Comsol Multiphysics® <strong>in</strong><br />

deformed mesh. Deformed mesh provide to<br />

model bread deformation dur<strong>in</strong>g bak<strong>in</strong>g. Some<br />

modifications have been used to <strong>com</strong>pute phase<br />

change <strong>in</strong> heat transfer equation. Temperature<br />

<strong>and</strong> moisture content evolution are <strong>in</strong> good<br />

agreement with experimental data.<br />

7. References<br />

1. S. Whitaker, Simultaneous <strong>Heat</strong>, <strong>Mass</strong>, <strong>and</strong><br />

Momentum <strong>Transfer</strong> <strong>in</strong> Porous Media: A Theory<br />

of Dry<strong>in</strong>g, Elsevier, 13, pp. 119-203 (1977)<br />

2. J.R. Philip, D.A. De Vries, Moisture<br />

movement <strong>in</strong> porous materials under temperature<br />

gradient, Trans. Amer. Geophys. Union, 38,<br />

pp. 222-232 (1957)<br />

3. J. Zhang, A.K. Datta, Some Considerations <strong>in</strong><br />

<strong>Model<strong>in</strong>g</strong> of Moisture Transport <strong>in</strong> <strong>Heat</strong><strong>in</strong>g of<br />

Hygroscopic Materials, Dry<strong>in</strong>g Technology, 22,<br />

(8), pp. 1983-2008 (2004).<br />

4. H. Ni, A. Datta, K. Torrance, Moisture<br />

transport <strong>in</strong> <strong>in</strong>tensive microwave heat<strong>in</strong>g of<br />

biomaterials: A multiphase porous media model,<br />

International Journal of <strong>Heat</strong> <strong>and</strong> <strong>Mass</strong><br />

<strong>Transfer</strong>, 42, (8), pp. 1501-1512 (1999)<br />

5. J. Zhang, A. Datta, Mathematical model<strong>in</strong>g of<br />

bread bak<strong>in</strong>g process, Journal of Food<br />

Eng<strong>in</strong>eer<strong>in</strong>g, 75, (1), pp. 78-89 (2006)<br />

6. P. Salagnac, P. Glouannec, D. Lecharpentier,<br />

Numerical model<strong>in</strong>g of heat <strong>and</strong> mass transfer <strong>in</strong><br />

Center<br />

porous medium dur<strong>in</strong>g <strong>com</strong>b<strong>in</strong>ed hot air, <strong>in</strong>frared<br />

<strong>and</strong> microwaves dry<strong>in</strong>g, International Journal of<br />

<strong>Heat</strong> <strong>and</strong> <strong>Mass</strong> <strong>Transfer</strong>, 47, (19), pp. 4479-4489<br />

(2004)<br />

7. I. L<strong>in</strong>d, C. Rask, Sorption isotherms of mixed<br />

m<strong>in</strong>ced meat, dough, <strong>and</strong> bread crust, Journal of<br />

Food Eng<strong>in</strong>eer<strong>in</strong>g, 14, (4), pp. 303-315 (1991).<br />

8. F. Van<strong>in</strong>, Formation de la croûte du pa<strong>in</strong> en<br />

cours de cuisson, propriétés rhéologiques et<br />

séchage en surface : une approche expérimentale<br />

et de modélisation, PhD, Institut des sciences et<br />

<strong>in</strong>dustries du vivant et de l’environnement<br />

(AgroParisTech) (2010).<br />

9. V. Jury, <strong>Transfer</strong>ts couplés masse chaleur<br />

d'une matrice alveolée. Application à la<br />

décongélation-cuisson du pa<strong>in</strong> précuit surgelé,<br />

PhD, ENITIAA de Nantes (2007).<br />

10. V. Jury, J. Monteau, J. Comiti, A. Le-Bail,<br />

Determ<strong>in</strong>ation <strong>and</strong> prediction of thermal<br />

conductivity of frozen part baked bread dur<strong>in</strong>g<br />

thaw<strong>in</strong>g <strong>and</strong> bak<strong>in</strong>g, Food Research<br />

International, 40, (7), pp. 874-882 (2007)<br />

11. E. Purlis, V.O. Salvadori, <strong>Bread</strong> bak<strong>in</strong>g as a<br />

mov<strong>in</strong>g boundary problem. Part 2: Model<br />

validation <strong>and</strong> numerical simulation, Journal of<br />

Food Eng<strong>in</strong>eer<strong>in</strong>g, 91, (3), pp. 434-442 (2009)<br />

12. A. Ousegui, C. Moresoli, M. Dostie, B.<br />

Marcos, Porous multiphase approach for bak<strong>in</strong>g<br />

process - Explicit formulation of evaporation<br />

rate, Journal of Food Eng<strong>in</strong>eer<strong>in</strong>g, pp. 535-544<br />

(2010)<br />

13. J. Zhang, A.K. Datta, S. Mukherjee,<br />

Transport processes <strong>and</strong> large deformation<br />

dur<strong>in</strong>g bak<strong>in</strong>g of bread, AIChE Journal, 51, (9),<br />

pp. 2569-2580 (2005)<br />

14. M.J. Wagner, T. Lucas, D. Le Ray, G.<br />

Trystram, Water transport <strong>in</strong> bread dur<strong>in</strong>g<br />

bak<strong>in</strong>g, Journal of Food Eng<strong>in</strong>eer<strong>in</strong>g, 78, pp.<br />

1167–1173 (2007)<br />

8. Acknowledgements<br />

The authors want to thank the National<br />

Research Agency of France (ANR) for its<br />

f<strong>in</strong>ancial contribution (ANR ALIA-BRAISE).<br />

9. Appendix<br />

Vapor diffusion coefficients:<br />

D<br />

D<br />

W<br />

v<br />

⎛ M M ⎞<br />

eff v CO Pv<br />

D ⎜<br />

∂<br />

2<br />

= −<br />

⎟<br />

M RT<br />

⎝ ∂W<br />

g ⎠<br />

−D<br />

⎛ M M ⎞<br />

v CO<br />

⎜ ⎟<br />

∂Pv<br />

M RT<br />

⎝ ∂T<br />

g ⎠<br />

T<br />

eff<br />

2<br />

=<br />

v<br />

⎡ k ⎛ M M<br />

i g eff v CO<br />

= −⎢ρ<br />

− D ⎜<br />

v<br />

⎢<br />

⎣<br />

µ<br />

g ⎝ M RT<br />

g<br />

P<br />

D g 2<br />

v<br />

⎞ ⎤<br />

⎟<br />

Pv<br />

⎥<br />

⎠ Pg<br />

⎥⎦


CO 2 diffusion coefficients:<br />

D<br />

D<br />

W<br />

CO2<br />

T<br />

CO2<br />

P<br />

D g<br />

CO<br />

= −D<br />

= −D<br />

= −ρ<br />

W<br />

v<br />

T<br />

v<br />

i<br />

CO<br />

k<br />

2 2<br />

µ<br />

Other coefficients:<br />

γ =<br />

1<br />

γ 3<br />

g<br />

g<br />

− D<br />

eff<br />

⎡ Pv<br />

− Pg<br />

∂Pv<br />

⎤<br />

⎢ − ⎥<br />

⎣ T ∂T<br />

⎦<br />

⎛ M M<br />

v CO2<br />

⎜<br />

⎝ M RT<br />

g<br />

⎟ ⎞<br />

⎠<br />

P<br />

P<br />

v<br />

g<br />

( P − P )<br />

⎡ ∂P<br />

ρ<br />

( ) ⎥ ⎤<br />

v s g v<br />

γ<br />

2<br />

= −γ<br />

3 ⎢ −<br />

i<br />

⎣∂W<br />

ρlε<br />

1−<br />

S ⎦<br />

ε M CO<br />

( 1− S)<br />

2<br />

γ<br />

3<br />

=<br />

RT<br />

ε M<br />

v<br />

( − S ) ⎡∂Pv<br />

Pv<br />

⎤<br />

β =<br />

1<br />

1<br />

⎢ −<br />

RT<br />

⎥<br />

⎣ ∂T<br />

T ⎦<br />

ε M<br />

v<br />

( − S ) ⎡ ∂Pv<br />

⎤<br />

β =<br />

1<br />

2<br />

RT<br />

⎢ ⎥<br />

⎣∂W<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!