20.01.2015 Views

Modeling Heat and Mass Transfer in Bread during ... - COMSOL.com

Modeling Heat and Mass Transfer in Bread during ... - COMSOL.com

Modeling Heat and Mass Transfer in Bread during ... - COMSOL.com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Bread</strong> swell<strong>in</strong>g<br />

To simulate the volume expansion of the<br />

bread, different mechanical models exist (Zhang<br />

[13], Van<strong>in</strong> [8]). In first approximation, we<br />

<strong>in</strong>troduced <strong>in</strong>to the model a deformation of the<br />

bread <strong>com</strong><strong>in</strong>g from numerical results (Zhang<br />

[13]). In this case, the volume expansion is a<br />

function of time <strong>and</strong> is given by a radius<br />

expression:<br />

α<br />

( t)<br />

⎛V0 α(<br />

t)<br />

⎞<br />

R ( t)<br />

= ⎜ ⎟ with:<br />

⎝ π ⎠<br />

5<br />

4<br />

⎧<br />

⎫<br />

-4⎛<br />

t ⎞<br />

-3⎛<br />

t ⎞<br />

⎪- 210 ⎜ ⎟ + 510 ⎜ ⎟ ⎪<br />

⎪ ⎝ 60 ⎠ ⎝ 60 ⎠ ⎪<br />

⎪<br />

3 ⎪<br />

⎪<br />

-2⎛<br />

t ⎞<br />

- 4.4910 ⎜ ⎟ ⎪<br />

⎪ ⎝ 60 ⎠ ⎪<br />

⎪<br />

⎬ for t ≤ 360 s<br />

=<br />

2<br />

⎨<br />

-1⎛<br />

t ⎞ ⎪<br />

⎪+1.51710<br />

⎜ ⎟ ⎪<br />

⎪ ⎝ 60 ⎠ ⎪<br />

⎪<br />

-3⎛<br />

t ⎞<br />

⎪<br />

⎪+ 4.810 ⎜ ⎟ + 0.9968 ⎪<br />

⎪ ⎝ 60 ⎠<br />

⎭<br />

⎪<br />

⎩1.7132<br />

for t > 360 s<br />

4. Numerical model<br />

0.5<br />

equilibrium approach <strong>in</strong> <strong>com</strong>mercial software<br />

due to divergence of heat source term<br />

correspond<strong>in</strong>g to phase change. The choice of<br />

general form makes it possible to <strong>in</strong>troduce this<br />

approach.<br />

<strong>Heat</strong> source term has been modified to<br />

correspond to the PDE general form:<br />

∂T<br />

r r<br />

ρ C<br />

p<br />

+ ∇ ⋅<br />

l<br />

∂t<br />

r r<br />

W<br />

a ∂W<br />

− Dl<br />

∇W<br />

⋅∇Lv<br />

+ ρ<br />

s<br />

Lv<br />

∂t<br />

5. Results<br />

W<br />

( − λ∇T<br />

+ D L ∇W<br />

)<br />

v<br />

= −ρ<br />

C<br />

g<br />

r r<br />

⋅∇T<br />

p, gv g<br />

Simulation has been realised for a 15 m<strong>in</strong><br />

bak<strong>in</strong>g <strong>in</strong> an oven at 190°C. Simulated results are<br />

<strong>com</strong>pared with Zhang <strong>and</strong> Datta [13]<br />

experimental data.<br />

Figure 5 presents the evolution of<br />

temperature obta<strong>in</strong>ed <strong>in</strong> the center <strong>and</strong> at 1.5 mm<br />

of the surface.<br />

140<br />

120<br />

100<br />

r<br />

The numerical model was programmed with<br />

Comsol Multiphysics®. The geometry is 2D<br />

cyl<strong>in</strong>drical. The <strong>in</strong>itial radius of bread is<br />

36.5 mm. A mobile triangular mesh<strong>in</strong>g (ALE)<br />

with 548 elements is used.<br />

Temperature, °C<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Experimental surface<br />

Experimental Center<br />

Simulation surface<br />

Simulation center<br />

0 5 10 15<br />

Time, m<strong>in</strong><br />

Figure 5. Temperatures <strong>in</strong> bread.<br />

Figure 4. Geometry <strong>and</strong> mesh.<br />

The equations are simultaneously resolved<br />

with a free step time by the solver UMFPACK.<br />

A bak<strong>in</strong>g of 15 m<strong>in</strong> is calculated <strong>in</strong> 47 s. All<br />

equations are implemented with PDE<br />

formulations <strong>in</strong> general form time dependant:<br />

∂u<br />

d a<br />

+ ∇ ⋅ Γ = F <strong>in</strong>side doma<strong>in</strong><br />

∂t<br />

− n ⋅ Γ = G⎫<br />

⎬ on doma<strong>in</strong> boundary<br />

0 = R ⎭<br />

with u the variable correspond<strong>in</strong>g to T, W <strong>and</strong><br />

P g . Equations have to be identified <strong>in</strong> different<br />

PDE terms. It is difficult to implement an<br />

Temperature evolutions of numerical model<br />

are <strong>in</strong> good agreement with experimental data.<br />

The surface temperature <strong>in</strong>creases until the end<br />

of bak<strong>in</strong>g. At 8 m<strong>in</strong>, the slope break of the curve<br />

shows the phenomenon of evaporation. In the<br />

center of bread, the temperature <strong>in</strong>creases but<br />

stay under 100°C.<br />

Figure 6 presents the evolution of mean<br />

moisture content.<br />

Moisture content, kg/kg<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0<br />

0 5 10 15<br />

Time, m<strong>in</strong><br />

Figure 6. Mean moisture content <strong>in</strong> bread.<br />

Moisture content evolution corresponds very<br />

well to experimental data. The quantity of liquid

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!