24.11.2014 Views

Sokolov Effect - Long-Range Interaction of Hydrogen with Metal ...

Sokolov Effect - Long-Range Interaction of Hydrogen with Metal ...

Sokolov Effect - Long-Range Interaction of Hydrogen with Metal ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

<strong>Long</strong>-<strong>Range</strong> <strong>Interaction</strong> <strong>of</strong> <strong>Hydrogen</strong> <strong>with</strong> <strong>Metal</strong> Surface<br />

Nathan Leefer<br />

Department <strong>of</strong> Physics<br />

UC Berkeley<br />

NALeefer@berkeley.edu<br />

February 21, 2008<br />

Nathan Leefer


Outline<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

1 Background<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

Nathan Leefer


Outline<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

1 Background<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

2 <strong>Sokolov</strong> <strong>Effect</strong><br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Nathan Leefer


Outline<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

1 Background<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

2 <strong>Sokolov</strong> <strong>Effect</strong><br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

3 Conclusions<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Energy Levels <strong>of</strong> <strong>Hydrogen</strong><br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

2 S 2 P<br />

1 S<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Energy Levels <strong>of</strong> <strong>Hydrogen</strong><br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

2 S 2 P<br />

Lifetime <strong>of</strong> 2 P states is<br />

∼1.5 ns<br />

1 S<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Energy Levels <strong>of</strong> <strong>Hydrogen</strong><br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

2 S 2 P<br />

Lifetime <strong>of</strong> 2 P states is<br />

∼1.5 ns<br />

120 nm<br />

1 S<br />

Nathan Leefer


2 S 12<br />

2 P 12<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Energy Levels <strong>of</strong> <strong>Hydrogen</strong><br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

2 P 32<br />

Lifetime <strong>of</strong> 2 P states is<br />

∼1.5 ns<br />

Fine-Structure effects lift<br />

degeneracies<br />

1 S 12<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Energy Levels <strong>of</strong> <strong>Hydrogen</strong><br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

2 P 32<br />

Lifetime <strong>of</strong> 2 P states is<br />

2 S 12<br />

2 P 12<br />

∼1.5 ns<br />

Fine-Structure effects lift<br />

degeneracies<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Energy Levels <strong>of</strong> <strong>Hydrogen</strong><br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

2 P 32<br />

Lifetime <strong>of</strong> 2 P states is<br />

2 S 12<br />

2 P 12<br />

∼1.5 ns<br />

Fine-Structure effects lift<br />

degeneracies<br />

Lamb Shift is on the order<br />

<strong>of</strong> 1 GHz<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

(Nearly) Degenerate Perturbation Theory<br />

H ′ = d E o + δ LS<br />

2 (|2S 1/2 >< 2S 1/2 | − |2P 1/2 >< 2P 1/2 |)<br />

2S 12<br />

2P 12<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

(Nearly) Degenerate Perturbation Theory<br />

H ′ = d E o + δ LS<br />

2 (|2S 1/2 >< 2S 1/2 | − |2P 1/2 >< 2P 1/2 |)<br />

H ′ nm =<br />

( δLS<br />

2<br />

d SP E o<br />

d SP E o<br />

Eigenvalues √ are<br />

δLS 2 + 4E o 2 dsp<br />

2<br />

± 1 2<br />

− δ LS<br />

2<br />

)<br />

2S 12<br />

2P 12<br />

Α2S 12 Β2P 12 <br />

E ⩵ ∆ LS 2 E o d sp<br />

Γ2S 12 Ξ2P 12 <br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

(Nearly) Degenerate Perturbation Theory<br />

H ′ = d E o + δ LS<br />

2 (|2S 1/2 >< 2S 1/2 | − |2P 1/2 >< 2P 1/2 |)<br />

H ′ nm =<br />

( δLS<br />

2<br />

d SP E o<br />

d SP E o<br />

Eigenvalues √ are<br />

δLS 2 + 4E o 2 dsp<br />

2<br />

± 1 2<br />

New eigenstates are<br />

superpositions <strong>of</strong> old<br />

eigenstates<br />

− δ LS<br />

2<br />

)<br />

2S 12<br />

2P 12<br />

Α2S 12 Β2P 12 <br />

E ⩵ ∆ LS 2 E o d sp<br />

Γ2S 12 Ξ2P 12 <br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

Atoms enter and leave<br />

E-Field non-adiabatically<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

Atoms enter and leave<br />

E-Field non-adiabatically<br />

Atoms leaving field have<br />

2 P 1/2 component<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

Atoms enter and leave<br />

E-Field non-adiabatically<br />

Atoms leaving field have<br />

2 P 1/2 component<br />

Acquired phase depends on<br />

energy difference and time<br />

in field<br />

√<br />

c(2P 1/2 ) ∝ cos( δLS 2 + 4E o 2 dsp 2 T )<br />

Nathan Leefer


Optical Analogue<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Neutral <strong>Hydrogen</strong><br />

Stark <strong>Effect</strong><br />

<strong>Hydrogen</strong> Atom Interferometer<br />

This set-up is analogous to an optical interferometer<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Measurement <strong>of</strong> Lamb Shift<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Pamir<br />

Nathan Leefer


Initial Results<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Problems:<br />

Difficult to assess systematic<br />

errors<br />

Nathan Leefer


Initial Results<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Problems:<br />

Difficult to assess systematic<br />

errors<br />

Non-trivial electric field near<br />

entrance and exit slits<br />

Nathan Leefer


Double Interferometer<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Use two interferometers<br />

separated by distance ’l’<br />

Nathan Leefer


Double Interferometer<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Use two interferometers<br />

separated by distance ’l’<br />

Oscillation period <strong>of</strong> 2P 1/2<br />

intensity depends only on<br />

Lamb-Shift and velocity<br />

Nathan Leefer


Double Interferometer<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Use two interferometers<br />

separated by distance ’l’<br />

Oscillation period <strong>of</strong> 2P 1/2<br />

intensity depends only on<br />

Lamb-Shift and velocity<br />

<strong>Sokolov</strong> Yu L, Yakovlev V P, Sov. Phys. JEPT 56 7<br />

(1982)<br />

<strong>Sokolov</strong> Yu L, in Proc. 2nd Int. Conf. on Precision<br />

Measurements and Fundamental Constants II (1981)<br />

Nathan Leefer


Demon Field<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Now the second electric field is turned <strong>of</strong>f<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

First Candidate: Stray Charges<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

<strong>Effect</strong>ive electric field corresponds to 10-12 V/cm<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

First Candidate: Stray Charges<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

<strong>Effect</strong>ive electric field corresponds to 10-12 V/cm<br />

To confirm predictions modify set-up accordingly...<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

First Candidate: Stray Charges<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

<strong>Effect</strong>ive electric field corresponds to 10-12 V/cm<br />

To confirm predictions modify set-up accordingly...<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

First Candidate: Stray Charges<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

<strong>Effect</strong>ive electric field corresponds to 10-12 V/cm<br />

To confirm predictions modify set-up accordingly...<br />

<strong>Effect</strong>ive field must be orthogonal to first longitudinal field<br />

Nathan Leefer


Results<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Second Candidate: Beam Halo<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Maybe diffraction halo <strong>of</strong> beam is interacting <strong>with</strong> metal<br />

surface<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Second Candidate: Beam Halo<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Maybe diffraction halo <strong>of</strong> beam is interacting <strong>with</strong> metal<br />

surface<br />

Beam size is 50 µm, slit width is 200 µm<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Second Candidate: Beam Halo<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Maybe diffraction halo <strong>of</strong> beam is interacting <strong>with</strong> metal<br />

surface<br />

Beam size is 50 µm, slit width is 200 µm<br />

Misalign beam to measure halo.<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Second Candidate: Beam Halo<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Maybe diffraction halo <strong>of</strong> beam is interacting <strong>with</strong> metal<br />

surface<br />

Beam size is 50 µm, slit width is 200 µm<br />

Misalign beam to measure halo.<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Second Candidate: Beam Halo<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Maybe diffraction halo <strong>of</strong> beam is interacting <strong>with</strong> metal<br />

surface<br />

Beam size is 50 µm, slit width is 200 µm<br />

Misalign beam to measure halo.<br />

Beam halo is small: 1.4 µm<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Third Candidate: Entanglement?<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

B B Kadomtsev proposes the effect is due to the creation <strong>of</strong><br />

entangled states<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Third Candidate: Entanglement?<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

B B Kadomtsev proposes the effect is due to the creation <strong>of</strong><br />

entangled states<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Third Candidate: Entanglement?<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

B B Kadomtsev proposes the effect is due to the creation <strong>of</strong><br />

entangled states<br />

Magnitude <strong>of</strong> effect should depend on material properties <strong>of</strong><br />

conductor<br />

Nathan Leefer


Results<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Kadomtsev’s Theory also makes predictions<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Kadomtsev’s Theory also makes predictions<br />

Nathan Leefer


The Consensus?<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

The experiment is modified twice more<br />

Nathan Leefer


The Consensus?<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

The experiment is modified twice more<br />

Nathan Leefer


Summary <strong>of</strong> Results<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

All discussed theories have failed to describe experimental<br />

results<br />

Nathan Leefer


Summary <strong>of</strong> Results<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

All discussed theories have failed to describe experimental<br />

results<br />

Other proposed candidates (casimir force, image charges, etc)<br />

are not consistent <strong>with</strong> the magnitude <strong>of</strong> observed effect<br />

Nathan Leefer


Summary <strong>of</strong> Results<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

All discussed theories have failed to describe experimental<br />

results<br />

Other proposed candidates (casimir force, image charges, etc)<br />

are not consistent <strong>with</strong> the magnitude <strong>of</strong> observed effect<br />

No theories consistent <strong>with</strong> experimental results have been<br />

proposed<br />

Nathan Leefer


Atomic Dysprosium<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Atomic Dysprosium also has nearly degenerate states <strong>of</strong> opposite parity<br />

(3 MHz-GHz)<br />

Nathan Leefer


Atomic Dysprosium<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Atomic Dysprosium also has nearly degenerate states <strong>of</strong> opposite parity<br />

(3 MHz-GHz)<br />

Nathan Leefer


Atomic Dysprosium<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Pamir<br />

Broken Theories<br />

Summary<br />

Dysprosium<br />

Atomic Dysprosium also has nearly degenerate states <strong>of</strong> opposite parity<br />

(3 MHz-GHz)<br />

Dysprosium may be a sensitive tool for measuring this effect<br />

Nathan Leefer


Summary<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Level structure <strong>of</strong> hydrogen and Stark <strong>Effect</strong><br />

Nathan Leefer


Summary<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Level structure <strong>of</strong> hydrogen and Stark <strong>Effect</strong><br />

Near degeneracy <strong>of</strong> 2S 1/2 and 2P 1/2 states to electric fields<br />

makes hydrogen ideal for use in atomic interferometer<br />

Nathan Leefer


Summary<br />

Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Level structure <strong>of</strong> hydrogen and Stark <strong>Effect</strong><br />

Near degeneracy <strong>of</strong> 2S 1/2 and 2P 1/2 states to electric fields<br />

makes hydrogen ideal for use in atomic interferometer<br />

There exists an unexplained interaction between hydrogen<br />

atoms and metal surfaces<br />

Nathan Leefer


Background<br />

<strong>Sokolov</strong> <strong>Effect</strong><br />

Conclusions<br />

Yu L <strong>Sokolov</strong><br />

Physics-Uspekhi 42 (5) 481–503 (1999)<br />

Yu L <strong>Sokolov</strong>, V P Yakovlev, V G Pal’chikov, and Yu A Pchelin<br />

Eur. Phys. J. D 20 27-46 (2002)<br />

Yu A Kucheryaev , V G Palchikov, Yu A Pchelin, Yu L <strong>Sokolov</strong>, and V P Yakovlev<br />

JETP Letters 81 (12) 644–646 (2005)<br />

Yu L <strong>Sokolov</strong>, V P Yakovlev<br />

Sov. Phys. JETP 56 7 (1982)<br />

Yu L <strong>Sokolov</strong><br />

in Proc. 2nd Int. Conf. on Precision Measurements and Fundamental Constants II (1981)<br />

B B Kadomtsev<br />

Phys. Lett. A 210 371-376 (1996)<br />

S T Belyaev<br />

Eur. Phys. J. D 25 247-252 (2003)<br />

Nathan Leefer

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!