25.11.2014 Views

New analysis techniques to reduce systematics due ... - CNGS - CERN

New analysis techniques to reduce systematics due ... - CNGS - CERN

New analysis techniques to reduce systematics due ... - CNGS - CERN

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong><br />

<strong>due</strong> <strong>to</strong> Hadron production<br />

(and other beam related issues)<br />

Micha̷l SZLEPER<br />

Northwestern University<br />

1. How best <strong>to</strong> use information from the near detec<strong>to</strong>r.<br />

a. Standard approach for an on-axis experiment.<br />

b. Improved approach and its generalization <strong>to</strong> off-axis.<br />

2. Prediction of the non-oscillated far detec<strong>to</strong>r spectrum.<br />

3. Evaluation of the ν e component of the beam.<br />

NBI 2002 <strong>CERN</strong> March 14-18, 2002


Standard approach with near detec<strong>to</strong>r I<br />

How <strong>to</strong> predict accurately the non-oscillated ν µ spectrum<br />

at a far detec<strong>to</strong>r?<br />

• Present knowledge - direct predictions from various hadron production models<br />

differ by up ro ∼ 25%.<br />

• Standard method: predict far detec<strong>to</strong>r spectrum based on spectrum measured in<br />

a near detec<strong>to</strong>r - “double ratio” method:<br />

dN Far<br />

dE<br />

[ dNFar<br />

]<br />

= dE<br />

dN Near<br />

dE nominal<br />

× dN Near<br />

dE<br />

• Nominal Far/Near ratio determined primarily by beamline geometry.<br />

• Non-oscillated far detec<strong>to</strong>r spectrum predictible within a few per cent.<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 2


Standard approach with near detec<strong>to</strong>r II<br />

“Double ratio” method applicable whenever the following is true:<br />

Each neutrino observed in the near detec<strong>to</strong>r ≡ expected certain flux of neutrinos in<br />

the far detec<strong>to</strong>r, with E Far = E Near .<br />

i.e., when secondary pion beam sees both detec<strong>to</strong>r at the same angle, Θ Far =Θ Near .<br />

BUT:<br />

• What about a realistic beam treatment (beam with imperfect pion focusing)?<br />

Θ Far ≠Θ Near<br />

• What about an off-axis experiment?<br />

Θ Far ≠Θ Near<br />

“Double ratio” method breaks down, more general approach required.<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 3


Standard approach with near detec<strong>to</strong>r III<br />

Low energy beam<br />

Medium energy beam<br />

ν µ<br />

CC<br />

5000<br />

4000<br />

x 10 4 0 2 4 6 8 10 12 14<br />

GFLUKA<br />

MARS<br />

ν µ<br />

CC<br />

7000<br />

6000<br />

5000<br />

x 10 4 0 2 4 6 8 10 12 14<br />

GFLUKA<br />

BMPT<br />

MARS<br />

Malensek<br />

3000<br />

BMPT<br />

Malensek<br />

4000<br />

2000<br />

3000<br />

1000<br />

2000<br />

1000<br />

0<br />

0<br />

Near<br />

E ν<br />

GeV<br />

Near<br />

E ν<br />

GeV<br />

ν µ<br />

CC<br />

1.25<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0 2 4 6 8 10 12 14<br />

(F/N) / (F/N) nominal<br />

E ν<br />

GeV<br />

ν µ<br />

CC<br />

1.25<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.75<br />

0 2 4 6 8 10 12 14<br />

(F/N) / (F/N) nominal<br />

E ν<br />

GeV<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 4


Improved approach I<br />

On-axis experiment with imperfect focusing:<br />

• An improved prediction of the far detec<strong>to</strong>r spectrum requires exactly the same<br />

approach as in off-axis, allowing E Far ≠ E Near in the general case.<br />

+<br />

π<br />

ν<br />

µ<br />

Θ<br />

1N<br />

Θ<br />

1F<br />

Near<br />

Far<br />

Horns<br />

+<br />

π<br />

Decay pipe<br />

Θ<br />

2N<br />

Θ<br />

2F<br />

ν<br />

µ<br />

The difference Θ N − Θ F increases with z.<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 5


Improved approach II<br />

What we want:<br />

Predict far detec<strong>to</strong>r spectrum for a realistic beam and an arbitrary location of the<br />

detec<strong>to</strong>r with accuracy comparable <strong>to</strong> the on-axis perfect focusing case<br />

• The same parent pion beam implies always a strong correlation between ν spectra<br />

in the on-axis near detec<strong>to</strong>r and an arbitrary (including off-axis) far detec<strong>to</strong>r.<br />

• Different angle implies different neutrino energy:<br />

E ν = 0.43 E π<br />

1+γ 2 θ 2 → E Far ≠ E Near .<br />

• Each neutrino observed in the near detec<strong>to</strong>r ≡ expected certain flux of neutrinos<br />

in the far detec<strong>to</strong>r, with P (E Far ,E Near ) ≠ δ(E Near ):<br />

dN Far<br />

dE Far<br />

= ∫ P (E Far ,E Near ) dN Near<br />

dE Near<br />

dE Near .<br />

• P (E Far ,E Near ) determined primarily by beamline geometry (and location of the far<br />

detec<strong>to</strong>r).<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 6


Improved approach III<br />

How <strong>to</strong> get P (E Far ,E Near )<br />

• Every decaying pion is assigned <strong>to</strong> weights: w Near/F ar = w Near/F ar (E π , Θ π ,z,r),<br />

defined as the fraction of all decays with a neutrino ending up in the near/far<br />

detec<strong>to</strong>r.<br />

• Neutrino energies E Near/F ar are unambiguously given by E π , Θ π ,z,r.<br />

• For a point-like pion source, every neutrino with E Near implies w Far /w Near neutrinos<br />

with E Far .<br />

• For a non-trivial, known, pion decay distribution Φ π (E π , Θ π ,z,r):<br />

P (E Far ,E Near )=<br />

∫∫∫∫<br />

∫∫∫∫<br />

Φπ w Far dE π dΘ π dz dr<br />

Φπ w Near dE π dΘ π dz dr<br />

with integration over all phase space yielding E Near and E Far in the numera<strong>to</strong>r, and<br />

E Near in the denomina<strong>to</strong>r.<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 7


Improved approach IV<br />

• Far spectrum prediction in finite energy bins:<br />

P (E Far ,E Near ) → M(N bins × N bins ).<br />

→ →<br />

N Far = M · N Near<br />

M - Near-<strong>to</strong>-far correlation matrix, in general non-diagonal.<br />

Toy example with 2 energy bins<br />

[ ][ ]<br />

( )<br />

N<br />

Far<br />

1 ,N2<br />

Far M11 M = 12 N<br />

Near<br />

1<br />

M 21 M 22 N Near<br />

2<br />

(1)<br />

• On-axis, perfect focusing: M 12 ,M 21 =0.<br />

• Realistic on-axis: M 21 > 0.<br />

• Off-axis: M 12 >> 0,M 21 ,M 22 ≈ 0.<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 8


On-axis experiment - hadron production<br />

Realistic on-axis experiment<br />

Low energy beam<br />

Medium energy beam<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 9


On-axis experiment - other beam related issues<br />

Upper plots: M matrix, lower plots: double ratio<br />

Beam simulation (PBEAM spectrum)<br />

Horn 1 shifted by 2 mm<br />

1.2<br />

1.25<br />

1.15<br />

1.1<br />

1.05<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.8<br />

0 1 2 3 4 5 6 7 8 9 10<br />

0.75<br />

0 1 2 3 4 5 6 7 8 9 10<br />

1.2<br />

1.25<br />

1.15<br />

1.1<br />

1.05<br />

1.2<br />

1.15<br />

1.1<br />

1.05<br />

1<br />

1<br />

0.95<br />

0.9<br />

0.85<br />

0.95<br />

0.9<br />

0.85<br />

0.8<br />

0.8<br />

0 1 2 3 4 5 6 7 8 9 10<br />

0.75<br />

0 1 2 3 4 5 6 7 8 9 10<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 10


Off-axis experiment - hadron production<br />

Low energy option<br />

Predictions for far detec<strong>to</strong>r spectra<br />

(NuMI beamline, LE, L = 735<br />

km), D = 10 km off axis.<br />

• On absence of any near detec<strong>to</strong>r:<br />

∼25% uncertainty.<br />

• With an on-axis near detec<strong>to</strong>r<br />

(M matrixderived from each<br />

model):<br />

GFLUKA: 74.2 events 1-3 GeV,<br />

BMPT: 74.3 events,<br />

MARS: 74.7 events,<br />

Malensek: 75.4 events.<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 11


Off-axis experiment - hadron production<br />

Medium energy option<br />

Predictions for far detec<strong>to</strong>r spectra<br />

(NuMI beamline, ME, L = 735<br />

km), D = 10 km off axis.<br />

• On absence of any near detec<strong>to</strong>r:<br />

∼40% uncertainty.<br />

• With an on-axis near detec<strong>to</strong>r<br />

(M matrixderived from each<br />

model):<br />

GFLUKA: 81.9 events 1-3 GeV,<br />

BMPT: 82.4 events,<br />

MARS: 82.6 events,<br />

Malensek: 82.6 events.<br />

NNN Micha̷l SZLEPER Analysis <strong>techniques</strong> <strong>to</strong> <strong>reduce</strong> <strong>systematics</strong>... 12


Off-axis experiment - focusing system<br />

HORN 1 DISPLACED BY 2 MM<br />

Presence of an onaxis<br />

near detec<strong>to</strong>r assumed.<br />

Prediction: Undis<strong>to</strong>rted<br />

M matrix<br />

applied <strong>to</strong> the dis<strong>to</strong>rted<br />

near detec<strong>to</strong>r<br />

spectrum.<br />

Total expected ν µ CC<br />

rate for 1


Off-axis experiment - ν e background<br />

INTRINSIC ν e<br />

, FAR 10 km OFF AXIS<br />

Hadron production related<br />

uncertainties are<br />

minimized by using ν µ<br />

information from the<br />

on-axis near detec<strong>to</strong>r.<br />

E.g., for 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!