27.11.2014 Views

Number theory, geometry and algebra - Dynamics-approx.jku.at

Number theory, geometry and algebra - Dynamics-approx.jku.at

Number theory, geometry and algebra - Dynamics-approx.jku.at

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Proof. Let P be a minimal polynomial over over Z, so th<strong>at</strong> P(ξ) = 0 (P<br />

is then irreducible over Q). For p,q ∈ Z <strong>and</strong> q > 0 we have<br />

( p<br />

(<br />

P(ξ)−P = ξ −<br />

q)<br />

p )<br />

P ′ (ξ 0 )<br />

q<br />

] [ ] [ ) )<br />

where ξ 0 ∈ ξ, p (resp. p ,ξ ). Then P(<br />

p<br />

≠ 0 <strong>and</strong> q P( n p<br />

∈ Z. We thus<br />

q q q<br />

q<br />

( ) ∣<br />

have the estim<strong>at</strong>e<br />

P p ∣∣ ≥ 1<br />

∣<br />

. We now choose c so th<strong>at</strong><br />

q q<br />

∣P ′ (ξ n 0 ) ∣ < 1 if c ∣<br />

|ξ 0 −ξ| ≤ 1. Then ∣ξ − p q∣ > c as claimed.<br />

q n<br />

2 Geometry<br />

2.1 Triangles:<br />

We begin with one of the simplest, but richest of geometrical figures—the<br />

triangle. A triangle is determined by its three vertices A, B <strong>and</strong> C. (Figure<br />

1). It is then denoted by ABC. Normally we shall assume th<strong>at</strong> it is nondegener<strong>at</strong>e<br />

i.e. th<strong>at</strong> A, B <strong>and</strong> C are not collinear. This can be expressed<br />

analytically as the st<strong>at</strong>ement th<strong>at</strong> the vectors x B − x B <strong>and</strong> x C − x A are<br />

linearly independent i.e. th<strong>at</strong> there are no non-trivial pairs (λ,µ) of scalars<br />

so th<strong>at</strong><br />

λ(x B −x A )+µ(x C −x A ) = 0.<br />

(non-trivial means th<strong>at</strong> either λ ≠ 0 or µ ≠ 0).<br />

We can rewrite this equ<strong>at</strong>ion in the form<br />

λ 1 x A +λ 2 x B +λ 3 x C = 0<br />

where λ 1 = −(λ+µ), λ 2 = λ,λ 3 = µ.<br />

Thisleadstothefollowingmoresymmetricdescriptionofthenon-degeneracy<br />

of ABC: the triangle is non-degener<strong>at</strong>e if <strong>and</strong> only if there is no triple<br />

(λ 1 ,λ 2 ,λ 3 ) of scalars so th<strong>at</strong> λ 1 +λ 2 +λ 3 = 0 <strong>and</strong><br />

λ 1 x A +λ 2 x B +λ 3 x C = 0.<br />

The vectors x A , x B <strong>and</strong> x C are then said to be affinely independent. In<br />

this case, any point x in R 2 can be written as<br />

λ 1 x A +λ 2 x B +λ 3 x C<br />

50

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!