27.11.2014 Views

An Heritage Approach to Aerospace Risk Based Design: With ...

An Heritage Approach to Aerospace Risk Based Design: With ...

An Heritage Approach to Aerospace Risk Based Design: With ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>An</strong> <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong><br />

<strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Presented at:<br />

SRA Workshop on <strong>Risk</strong> <strong>An</strong>alysis of <strong>Aerospace</strong> Systems II:<br />

Mission success Starts with Safety<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Presented by:<br />

Joseph R. Fragola<br />

Vice President and Principal Scientist<br />

Science Applications International Corp.<br />

265 Sunrise Highway, Suite 22, Rockville Centre, NY 11570<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 1 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


<strong>Risk</strong> <strong>Based</strong> Top Down <strong>Design</strong><br />

Requirements Development – Top Level<br />

Performance Reliability Operability<br />

Filter for Simplicity / Robustness / Ease Of Maintenance<br />

<strong>Design</strong> Definition<br />

Performance<br />

Models<br />

Yes<br />

Criteria<br />

Met?<br />

No<br />

Reliability<br />

Models<br />

Yes<br />

Criteria<br />

Met?<br />

No<br />

Operability<br />

Models<br />

Criteria<br />

Met?<br />

No<br />

Yes<br />

Optimized<br />

<strong>Design</strong><br />

Identify the sets of design options that converge on requirements<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 2 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Three Pillars of Good <strong>Design</strong><br />

• Make it work<br />

– Does it satisfy the requirements?<br />

• Make it safe<br />

– Does it meet the Safety goals?<br />

• Make it cost effective<br />

– Does it comply with budgetary constraints?<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 3 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Make It Work<br />

<strong>Design</strong> Definition<br />

Requirements<br />

Definition<br />

Performance<br />

Model<br />

Top Level Criteria<br />

Performance<br />

Criteria<br />

Met?<br />

Yes<br />

Reliability<br />

<strong>An</strong>alysis<br />

Top Level Criteria<br />

• Performance<br />

– Thrust/ISP/Thrust <strong>to</strong> Weight<br />

• Reliability<br />

– Catastrophic R/ Shutdown R<br />

• Maintainability<br />

– <strong>Design</strong> features - RCM<br />

• Operability<br />

– Cost/ Time per Turnaround<br />

Performance Criteria Not Met<br />

No<br />

Performance Optimization <strong>Design</strong> Loop – Does it work?<br />

• Inputs are the system definition<br />

• Functionality model takes system definition and calculates performance<br />

• If basic performance and engineering criteria are not met, iterate design<br />

• This Performance loop is mostly complete at ConDR<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 4 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Make It Safe<br />

<strong>Design</strong> Definition<br />

Good Reliability and<br />

Operability Principles<br />

•Simplicity<br />

•Robustness<br />

•Ease Of Maintenance<br />

Performance<br />

Model<br />

Reliability Model<br />

Requirements<br />

Definition<br />

No<br />

Catastrophic Frequency<br />

Event Scenarios<br />

Top Level<br />

Criteria<br />

Reliability<br />

Criteria<br />

Criteria<br />

Met?<br />

Top Level Criteria<br />

• Performance<br />

– Thrust/ISP/Thrust <strong>to</strong> Weight<br />

• Reliability<br />

– Catastrophic/ Shutdown<br />

• Maintainability<br />

– <strong>Design</strong> features - RCM<br />

• Operability<br />

– Cost/ Time per Turnaround<br />

Yes<br />

Operability<br />

<strong>An</strong>alysis<br />

Eliminate Scenario, or Failure Mode<br />

No<br />

Mitigation<br />

Preferred<br />

Necessary<br />

Reliability Optimization <strong>Design</strong> Loop – Is it Reliable Enough?<br />

• Reliability model is based on heritage where possible<br />

• <strong>Heritage</strong> is extended using probabilistic stress analysis <strong>to</strong> determine robustness<br />

• Fault <strong>to</strong>lerance and redundancy are analyzed from system configuration<br />

• If reliability requirements are not met, increase design margins and re-calculate performance<br />

• If new design margins cause performance requirements <strong>to</strong> be overly compromised identify mitigation<br />

strategies<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 5 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


<strong>Design</strong> Definition<br />

Reliability Mitigation Trade /<br />

Optimization Expansion<br />

Reliability Model<br />

Catastrophic Frequency<br />

Event Scenarios<br />

Event Mitigation (+)<br />

False Positives (-)<br />

Shutdown Frequency<br />

Event Scenarios<br />

New <strong>Design</strong> Requirements:<br />

• Red-line Logic and Sensors<br />

• Health Moni<strong>to</strong>ring Sensors and Data Acquisition<br />

• Inspection Ports<br />

• Maintainability Features<br />

Reliability Mitigation <strong>Design</strong> Loop – What mitigations are<br />

effective?<br />

• Postulate Mitigation Alternatives<br />

• Model Tasks and frequencies<br />

• Determine Human Error Probabilities<br />

• Identify solutions that meet reliability requirements<br />

Human Error Probabilities:<br />

Catastrophic/ Benign SD/Fail <strong>to</strong> Detect<br />

Mitigation Process (RCM)<br />

Support<br />

Tasks:<br />

Requirements<br />

Frequency<br />

Operability<br />

Model<br />

Mitigation Processes<br />

! Health Moni<strong>to</strong>ring<br />

– Reduces the probability of flying an<br />

engine with a component failure<br />

without human intervention<br />

! Red Lines<br />

– Convert catastrophic failure <strong>to</strong><br />

Shutdown<br />

– Add False positives<br />

! Inspection/ Life Limits:<br />

– Reduce the probability of<br />

component failure<br />

– Add support tasks<br />

• Introduces human error<br />

• Adds requirements for<br />

maintainability features<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 6 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Make It Cost Effective<br />

<strong>Design</strong> Definition<br />

Baseline tasks required <strong>to</strong><br />

keep engine operable<br />

Mitigation Process (RCM)<br />

Reliability<br />

Model<br />

Support<br />

Tasks/<br />

Frequency<br />

Equipment Reliability<br />

Human Error Probabilities:<br />

Introduces Catastrophic /<br />

Benign SD or Fail <strong>to</strong> Detect<br />

Critical Failure Condition<br />

Requirements Definition<br />

Operability Model<br />

Task <strong>An</strong>alysis<br />

• Man Power Loading<br />

• Materials<br />

• Human Error Events<br />

• Probabilistic Failure<br />

Logic<br />

Constraints<br />

Task Schedule<br />

<strong>Design</strong> Modifications<br />

Top Level<br />

Criteria<br />

Cost<br />

Time<br />

Operability<br />

Criteria<br />

Criteria<br />

Met?<br />

No<br />

Evaluate alternative<br />

concepts<br />

Yes<br />

Maintainability/Supportability Optimization <strong>Design</strong> Loop<br />

• Do support costs and schedule meet requirements? Evaluate Turn Around Time<br />

and Cost<br />

• Identify Drivers, Optimize Process<br />

• If Criteria not met: Identify alternative solutions that meet cost requirements<br />

– Modify tasks: Streamline Operations / Reduce human error / Facilitate<br />

maintenance tasks<br />

– Modify design: Reduce maintenance requirements (robustness) / Optimize<br />

design for ease of maintenance (Simplicity) / Facilitate maintenance tasks<br />

(RCM)<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 7 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


<strong>Risk</strong> Driver Identification<br />

• In general, review WBS of each alternative<br />

• Identify those WBS elements which are<br />

risk drivers<br />

• <strong>Risk</strong> driver implies uncertainty in<br />

development with significant potential<br />

impact on program cost and schedule<br />

• His<strong>to</strong>rical risk drivers;propulsion, staging,<br />

multiple engine manifolding, thermal<br />

protection<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 8 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Develop <strong>Risk</strong>-focused WBS<br />

• Trim hierarchy for low heritage risk<br />

• Expand for high heritage risk<br />

• WBS levels reflect risk driving elements<br />

of alternative<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 9 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Development of Surrogate(s)<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 10 of 42<br />

• Review heritage for potential surrogates<br />

• Develop component functional<br />

representation of WBS for surrogate<br />

• Develop or modify surrogate risk model<br />

in<strong>to</strong> component functional (“lego block”)<br />

form<br />

• Map surrogate <strong>to</strong> new alternative<br />

• Modify risk models as appropriate<br />

• Estimate risk from surrogate as<br />

modified<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Top Level of Shuttle PRA<br />

1995 Study<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 11 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Shuttle PRA Restructured<br />

WBS Oriented<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 12 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Shuttle PRA Restructured<br />

for Multistage Launcher<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 13 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


PRA Structure Mapping<br />

• Choose <strong>to</strong>p event<br />

• Identify overlap events<br />

• Identify non-applicable events<br />

• Identify alternate unique events<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 14 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


RLV Loss of Vehicle (LOV) Model<br />

(Bimese Example)<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 15 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Quantification via Surrogate<br />

• Add additional surrogates as<br />

appropriate<br />

• Develop models for remaining unique<br />

elements<br />

• Integrate models<br />

• Quantify risk with integrated models<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 16 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Shuttle PRA Expanded<br />

<strong>to</strong> Included Crew Escape<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 17 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


RLV Loss of Crew (LOC) Model<br />

(Bimese Model)<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 18 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


STS PRA Generalization<br />

Functional “Lego” Block Definition<br />

ENG_CAT_ADJ<br />

ENG_CAT_COBRA<br />

ENG_CAT_SSME_95<br />

ENG_CAT_SSME_97<br />

ENG_CAT_COBL<br />

1.97E-03<br />

1.98E-03<br />

1.97E-03<br />

1.99E-03<br />

1.96E-03<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 19 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


<strong>Risk</strong> Model – Baseline Shuttle Results<br />

<strong>Risk</strong> Model<br />

LOV Model Element Model Number LOV Energy LOC<br />

Oribiter Engine Catastrophic Failure ENG_CAT_SSME_97 3 1.97E-03 HE 1.97E-03<br />

Orbiter Propellant Management Check Valve PM_CHK 0 0.00E+00 HE 0.00E+00<br />

Oribiter Propellant Management Disconnect Valve PM_DISC_FC 2 1.30E-06 HE 1.30E-06<br />

Oribiter Propellant Management Feed Valve PM_FEED 0 0.00E+00 HE 0.00E+00<br />

Oribiter Propellant Management Manifold PM_MAN 0 0.00E+00 HE 0.00E+00<br />

Oribiter Propellant Management Pre Valve PM_PRE_FC 6 1.75E-05 HE 1.75E-05<br />

Orbiter_Ascent 1.98E-03 HE 1.98E-03<br />

SRB Actuta<strong>to</strong>r SRB_ACT 4 4.13E-05 HE 4.13E-05<br />

SRB Burn SRB_BRN 2 5.28E-04 HE 5.28E-04<br />

SRB Gimbal SRB_GIM 2 1.48E-05 HE 1.48E-05<br />

SRB Ignition SRB_IGN 2 4.80E-04 HE 4.80E-04<br />

Booster Engine Catastrophic Failure ENG_CAT_SSME_97 0 0.00E+00 HE 0.00E+00<br />

Booster Propellant Management Disconnect Valve PM_DISC_FC 0 0.00E+00 HE 0.00E+00<br />

Booster Propellant Management Manifold PM_MAN 0 0.00E+00 HE 0.00E+00<br />

Booster Propellant Management Pre Valve PM_PRE_FC 0 0.00E+00 HE 0.00E+00<br />

Booster 1.02E-03 HE 1.02E-03<br />

Constant Shutdown Rate Single_Engine 0.00E+00<br />

Constant Shutdown Rate Double_Engine 0.00E+00<br />

Constant Shutdown Rate Triple_Engine 0.00E+00<br />

Weibull Shutdown Single_Engine 0.0E+00<br />

Weibull Shutdown Double_Engine 5.7E-03<br />

Weibull Shutdown Triple_Engine 4.5E-03<br />

Binomial Failure Model Single_Engine 0.00E+00<br />

Binomial Failure Model Double_Engine 9.71E-05<br />

Binomial Failure Model Triple_Engine 9.09E-08<br />

Loss_of_Thrust 9.71E-05 LE 9.71E-05<br />

External_Tank ET 1 1.91E-04 HE 1.91E-04<br />

Staging Stage_SRB 2 1.49E-04 HE 1.49E-04<br />

Thermal_Protection TPS_SH_NOM 5.00E-04 HE 5.00E-04<br />

Flight_Control FC_HYD 8.10E-04 LE 8.10E-04<br />

Landing LND_DS 4.11E-04 LE 4.11E-04<br />

Total 5.17E-03 5.17E-03<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 20 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Input Table<br />

Parameters<br />

From Mission<br />

Model<br />

Multiple<br />

Reliability<br />

Models<br />

Pull-down<br />

Boxes<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 21 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Shuttle <strong>Risk</strong> Contribu<strong>to</strong>rs<br />

LOV/LOC are equivalent since the Shuttle has no crew protection<br />

<strong>Risk</strong> Contribu<strong>to</strong>rs<br />

Probability per Mission<br />

6.00E-03<br />

5.00E-03<br />

4.00E-03<br />

3.00E-03<br />

2.00E-03<br />

1.00E-03<br />

0.00E+00<br />

LOV<br />

<strong>Risk</strong> Measure<br />

LOC<br />

Landing<br />

Flight Control<br />

Thermal Protection<br />

Staging<br />

External Tank<br />

Loss of Thrust<br />

Booster<br />

Orbiter Ascent<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 22 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Potential Impact of Candidate<br />

Technologies<br />

Continued component reliability improvements become less important<br />

<strong>Risk</strong> Contribu<strong>to</strong>rs for Shuttle Baseline with<br />

improving SSME<br />

LOV Probability (per<br />

mission)<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 23 of 42<br />

6.00E-03<br />

5.00E-03<br />

4.00E-03<br />

3.00E-03<br />

2.00E-03<br />

1.00E-03<br />

0.00E+00<br />

1.00E-08<br />

4.9.E-08<br />

1.0.E-07<br />

3.0.E-07<br />

5.0.E-07<br />

8.0.E-07<br />

1.0.E-06<br />

1.3.E-06<br />

Engine Failure Rate (eng-sec)<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon<br />

LOV-LD<br />

LOV-FC<br />

LOV-TPS<br />

LOV-ET-ASC<br />

LOV-BOOST-ASC<br />

LOV-ORB-ASC


Mars Sample Return<br />

PRELIMINARY<br />

work in progress<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 24 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Earth Entry Vehicle<br />

PRELIMINARY<br />

work in progress<br />

Unstable aftbody shape<br />

Lid Isolation<br />

Structure<br />

OS-CV Double<br />

Containment<br />

Cellular Structure:<br />

Omnidirectional<br />

Staggered Double Layer<br />

Energy Absorber<br />

Penetration arres<strong>to</strong>r<br />

Thermal Insula<strong>to</strong>r<br />

Carbon-Carbon<br />

Primary Structure<br />

PICA-15 Primary Heatshield<br />

Highly Stable Aerodynamic Shape/C.G. Combination<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 25 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Assured Containment Packing <strong>Design</strong><br />

1: Primary Container<br />

Sample Canister is a high strength non-permeable impact <strong>to</strong>lerant<br />

structure<br />

<strong>Design</strong>ed <strong>to</strong> survive worst case design loads.<br />

2: Secondary Container<br />

Containment Vessel is a high<br />

strength non-permeable impact<br />

<strong>to</strong>lerant structure.<br />

<strong>Design</strong>ed <strong>to</strong> survive beyond<br />

worst case design loads 1.4 FS.<br />

PRELIMINARY<br />

work in progress<br />

“Packing Foam”<br />

Energy Absorption material provides<br />

G load limitation (6000 G’s) for<br />

impact on rigid surface. Langley’s<br />

cellular construction will also provide<br />

protection from direct rock strike.<br />

3: Tertiary Outer Shipping<br />

Container<br />

Impact Sphere structure provides<br />

structural integrity <strong>to</strong> prevent release<br />

of OS/CV assembly during worst case<br />

primary impact.<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 26 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


OS Configuration<br />

Sample<br />

Canister<br />

Lid<br />

Seals<br />

and<br />

Latches<br />

PRELIMINARY<br />

work in progress<br />

Motion<br />

Restric<strong>to</strong>r<br />

Radio Beacon<br />

Electronics Volume<br />

Cachebox<br />

S<strong>to</strong>rage<br />

Volume<br />

Power Conditioning<br />

Electronics Volume<br />

Passive Thermal<br />

Control Volume<br />

Sample Canister<br />

Primary Structure<br />

Solar Cells<br />

<strong>An</strong>tennas<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 27 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon<br />

Solar Array<br />

Structure


Conventional Functional <strong>Design</strong><br />

Compression<br />

Seal<br />

• One seal on each side suffices <strong>to</strong> perform<br />

the sealing function<br />

• However <strong>to</strong> meet risk requirements Seal<br />

must prevent contamination release at<br />

better than 1E-6<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 28 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


<strong>Risk</strong>-<strong>Based</strong> <strong>Design</strong> for<br />

Independent Failures<br />

3<br />

Compression<br />

Seals<br />

• Three seals, rather than one, satisfies both<br />

functional and independent failure risk<br />

requirements<br />

• Here redundancy provides protection<br />

against independent seal failures<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 29 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


<strong>Risk</strong>-<strong>Based</strong> <strong>Design</strong> <strong>to</strong> address<br />

Contamination and CCF<br />

Contamination<br />

Tape (on takeup<br />

Reel)<br />

Fused Plug<br />

Metal-<strong>to</strong>-metal<br />

Seal<br />

Compression<br />

Plug @ 180<br />

degrees<br />

Compression<br />

Plug @ 270<br />

degrees; First <strong>to</strong><br />

engage<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 30 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


<strong>Risk</strong>-based Magazine Concept<br />

Lid<br />

Magazine<br />

Canister<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 31 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Magazine in Sealed Position<br />

Magazine face seal<br />

Lid<br />

Pyro weld<br />

Lid Latch<br />

Seals (3)<br />

Interface <strong>to</strong><br />

Payload Adapter<br />

Magazine<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 32 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Detail of <strong>Risk</strong>-<strong>Based</strong> Sealing<br />

Magazine face seal<br />

Pyro weld<br />

Dissimilar seals<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 33 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


PRA-<strong>Based</strong> EEV <strong>Design</strong> Changes.<br />

<strong>Risk</strong>-<strong>Based</strong> Changes <strong>to</strong> EEV <strong>Design</strong><br />

• Forebody TPS Carbon-phenolic instead of PICA<br />

• Revised magazine/canister/os seal design<br />

• Encapsulation/sterilization features of CV (TBD)<br />

• Modification of aft body curvature and center of<br />

gravity <strong>to</strong> ensure EEV reorientation (TBD)<br />

• Micrometeoroid shield and detec<strong>to</strong>r (TBD)<br />

• Landing footprint positioning within UTTR<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 34 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Phase 7: Hypersonic Entry<br />

WAS:<br />

• Implemented mitiga<strong>to</strong>rs<br />

– ERV spacecraft packaged in a vault in the shuttle payload bay<br />

– Vault will come free of the shuttle during aerodynamic break-up<br />

– Vault has sacrificial layer <strong>to</strong> sustain break-up collisions, and TPS<br />

for travel through heat pulse<br />

– Vault has a multi-shell design with crushable impact absorbing<br />

material and a parachute <strong>to</strong> descend slowly<br />

– Vault will float if free from the shuttle and in water, but is designed<br />

<strong>to</strong> ~6000 m pressure if undamaged<br />

• Other potential mitiga<strong>to</strong>rs<br />

– Flotation Device can be added <strong>to</strong> further assure flotation<br />

– “Poison pill” can be added <strong>to</strong> sterilize samples<br />

– Better understanding vault response <strong>to</strong> hypersonic breakup<br />

scenarios<br />

IS:<br />

• Potential mitiga<strong>to</strong>rs<br />

– Increase shuttle deorbit burn reliability<br />

– Implement intervention <strong>to</strong> recover vault from hostile terri<strong>to</strong>ry<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 35 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Vault <strong>Design</strong><br />

-For cases of Aerodynamic break-up the<br />

vault need only slow down<br />

aerodynamically <strong>to</strong> velocities required for<br />

the chute <strong>to</strong> deploy. The current design<br />

satisfies this by aerodynamically slowing<br />

down <strong>to</strong> ~Mach 0.5. Parachute landing<br />

speeds are ~11m/s<br />

TPS<br />

CRUSHABLE<br />

VAULT<br />

GUIDE<br />

ERV<br />

GRAPPLE<br />

Skirt<br />

TRAY<br />

MEE<br />

CHUTE<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 36 of 42<br />

Total Mass: 10400 kg<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon<br />

Inner Vault & Mechanisms:<br />

2600 kg


Phase 1: Above Safe Orbit<br />

• No CNA events above “safe” orbit.<br />

– Above “safe orbit”, metric is mission success<br />

• A safe orbit is a trade among orbital lifetime, orbital debris and radiation flux<br />

– 500-700 km best for OD avoidance<br />

• Orbital lifetime in tens of years (e.g. HST orbit)<br />

– 700-1000 km worst<br />

OD zone<br />

• Most “100-year<br />

orbits” fall in<br />

this zone<br />

– 1200 km would be<br />

a “desirable”<br />

disposal altitude<br />

• There is a<br />

drop-off in OD<br />

after this<br />

altitude<br />

• Very long<br />

lifetime orbits<br />

Orbital Altitude (km )<br />

1700<br />

1600<br />

1500<br />

1400<br />

1300<br />

1200<br />

1100<br />

1000<br />

900<br />

800<br />

700<br />

M a x im um S huttle Altitude<br />

600<br />

500<br />

400<br />

1.0E-06 1.0E-05 1.0E-04<br />

1700<br />

50000 rem/yr<br />

1600<br />

1500<br />

30000 rem/yr<br />

1400<br />

1300<br />

Trapped<br />

1200<br />

Pro<strong>to</strong>n<br />

Dose<br />

1100<br />

6000 rem/yr<br />

1000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

0 20 40 60 80 100<br />

BN=13.6<br />

BN=27.3<br />

BN=144.2<br />

M M OD Im pact Probabiity (>1 cm /m 2/yr)<br />

Orbital Decay Tim e (Yrs)<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 37 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Phase 2: ERV Below Safe Earth Orbit<br />

<strong>Risk</strong> Drivers:<br />

• ERV fault leaves it below safe orbit, but above shuttle orbit<br />

AND<br />

• New technology not developed <strong>to</strong> retrieve ERV within 10 years<br />

AND<br />

• MM or OD fails canister<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 38 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon


Impact Velocities<br />

The Impact Velocity of an Intact Shuttle was taken from:<br />

Galileo: Uncontrolled STS Orbiter Re-entry- A. McRonald, JPL<br />

•114 m/s was quantified as the worst case for an out of control orbiter falling at speeds that<br />

would allow it <strong>to</strong> remain intact<br />

• JSC Flight Dynamics Division reviewed the document and concurs with this number.<br />

Mach 1.0 <strong>to</strong> initial<br />

approach<br />

Alt: 16.293 km -


Phase 9: Landing<br />

<strong>Risk</strong> driver:<br />

• Orbiter failure during<br />

landing<br />

AND<br />

• Vault failure during<br />

exposure <strong>to</strong> Orbiter<br />

landing impact conditions<br />

Failure during<br />

landing at ELS<br />

results in crash in<br />

water<br />

Page 22<br />

Shuttle Failure<br />

during landing given<br />

ELS<br />

GELS-LDG-0<br />

2.07E-09<br />

ShV not recovered or<br />

fails on impact<br />

during ELS<br />

GELS-LDG-1<br />

7.66E-11<br />

GELS-LDG-2<br />

1.99E-09<br />

Final <strong>Approach</strong><br />

Alt:


Mission Probability of CNA<br />

1.E+00<br />

1.E-01<br />

1.E-02<br />

1.E-03<br />

1.E-04<br />

1.E-05<br />

1.E-06<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 41 of 42<br />

Containment Not Assured (CNA) for Shuttle Mission<br />

Running Probability During Conceptual <strong>Design</strong><br />

<strong>Design</strong> Session Dates<br />

5/4/01 5/14/01 5/24/01 6/3/01 6/13/01 6/23/01 7/3/01 7/13/01 7/23/01<br />

5/10/01 - First<br />

estimates of CNA for<br />

the Shuttle Mission<br />

using strawman<br />

numbers.<br />

5/22/01 -<br />

Estimation of<br />

Mars material<br />

attached and<br />

floating with ERV.<br />

5/27/01 - Accounted for the<br />

mitigation techniques in the<br />

model for shuttle failures<br />

on-orbit.<br />

5/31/01 -<br />

Mitigation<br />

efforts for<br />

eliminating<br />

Mars materials<br />

from ERV.<br />

6/11/01 - Additional data<br />

increases probability of<br />

ERV MMOD hit below safe<br />

orbit.<br />

6/08/01 - Probability<br />

of ERV MMOD<br />

impact prediction<br />

increased for spiral<br />

down and loitering on-<br />

6/4/01 -<br />

Minor<br />

updates<br />

7/12/01 - Updates <strong>to</strong> ERV<br />

failures and mission ops<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon<br />

6/14/01 -<br />

Additional<br />

data reduces<br />

probability of<br />

ERV MMOD<br />

hit below safe<br />

orbit<br />

6/20/01 - ERV<br />

failure rate and<br />

updates <strong>to</strong> the<br />

model.


Summary<br />

• <strong>Risk</strong>-based design is appropriate for many<br />

segments of the MSR mission<br />

• PRA’s make the design team carefully think<br />

through the problem<br />

• PRA results focused the design effort<br />

– Constant iteration among design team and<br />

risk analysts<br />

• PRA results constantly shifted with changes<br />

in the design. Real time PRA <strong>to</strong>ols required<br />

<strong>to</strong> allow currency with new design<br />

environment<br />

• Concurrent design and PRA allowed<br />

expected design risk <strong>to</strong> be tracked as a<br />

design resource<br />

• Overall <strong>Risk</strong> <strong>Based</strong> design approach<br />

implementation considered a success<br />

28-29 Oc<strong>to</strong>ber 2002<br />

Slide 42 of 42<br />

A <strong>Heritage</strong> <strong>Approach</strong> <strong>to</strong> <strong>Aerospace</strong> <strong>Risk</strong> <strong>Based</strong> <strong>Design</strong>: <strong>With</strong> Application<br />

Day 1 Afternoon

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!