27.11.2014 Views

MATH 2230 Assignment 5 Topic: Laplace transforms

MATH 2230 Assignment 5 Topic: Laplace transforms

MATH 2230 Assignment 5 Topic: Laplace transforms

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>MATH</strong> <strong>2230</strong> <strong>Assignment</strong> 5<br />

<strong>Topic</strong>: <strong>Laplace</strong> <strong>transforms</strong><br />

1. Use the definition of the <strong>Laplace</strong> transform to determine<br />

For which values of s is your answer valid?<br />

L[t 2 ].<br />

2.<br />

a) Show that<br />

by using the definition of the <strong>Laplace</strong> transform.<br />

L[t 0 ] = 0!<br />

s 0+1 when s > 0 (1)<br />

b) Let n 1 be an integer. Prove that<br />

∫<br />

L[t n ∞<br />

] = e −st t n dt<br />

0<br />

∫ )<br />

R<br />

= lim e<br />

R→∞( −st t n dt<br />

0<br />

( [ ] ) e<br />

= lim −<br />

−st t n R ∫ )<br />

+ n R<br />

R→∞ s<br />

0<br />

s R→∞( lim e −st t n−1 dt<br />

0<br />

and hence show that for each n = 1, 2,<br />

L[t n ]= n s L[tn−1 ] when s >0. (2)<br />

c) Use induction to show that for each n =0, 1, 2,<br />

L[t n ]= n!<br />

s n+1 when s > 0.<br />

(Hint: use part (a) for the n = 0 case and part (b) for the induction step).<br />

3. Show that y(t) = t 3 is of exponential order.<br />

4. Consider the following existence theorem:<br />

Theorem 1. (Existence) Let y(t) be a function such that |y(t)|b.<br />

Show that the function 3cos(2t) is of exponential order and use the above theorem to show that<br />

exists for s > 0.<br />

L[3cos(2t)]


5. Use any formulae done in class to determine the following<br />

i. L[t 3 −t 2 + 4t +2]<br />

ii. L[3e 4t − e −2t ]<br />

iii. L[cos 2 2t]<br />

iv. L[t 2 e 2t ]<br />

v. L[φ(t)] where φ(t)=<br />

(hint: use a double angle formula)<br />

{<br />

sin 2t 0 t < π<br />

0 t π<br />

6. Use partial fractions to determine the following<br />

[ ]<br />

i. L −1 s 2 − 6<br />

s 3 + 4s 2 +3s<br />

[ ]<br />

ii. L −1 5s 3 −6s − 3<br />

s 3 (s+1) 2<br />

7. By shifting the s variable, determine the following<br />

[ ]<br />

i. L −1 1<br />

s 2 + 4s + 4<br />

[ ]<br />

ii. L −1 2s+3<br />

(s+4)<br />

[<br />

3 ]<br />

iii. L −1 s 2<br />

(s − 1) 4<br />

8. By shifting the s variable, prove the following<br />

[ ]<br />

i. L −1 1<br />

(s+a) n = tn e −at<br />

for n = 0, 1, 2,<br />

n!<br />

[<br />

ii. L −1 s<br />

]= 1 (s+a) 2 + b 2 b e−at (b cos(bt) −asin(bt))<br />

9. By shifting the t variable, find<br />

and sketch your answer.<br />

L −1 [ 3<br />

s − 4e−s<br />

s 2<br />

]<br />

+ 4e−3s<br />

s 2<br />

10. Using the <strong>Laplace</strong> transform, solve the differential equation<br />

x ′′ + 3x ′ + 2x=4t 2<br />

subject to the initial conditions x(0) = 0 and x ′ (0) = 0.<br />

11. Using the <strong>Laplace</strong> transform, solve the differential equation<br />

y ′′′′ − y = 0<br />

subject to the initial conditions y(0)=0, y ′ (0)=1, y ′′ (0)=0 and y ′′′ (0)=0.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!