28.11.2014 Views

a literature survey on z-source inverter - vsrd international journals ...

a literature survey on z-source inverter - vsrd international journals ...

a literature survey on z-source inverter - vsrd international journals ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

VSRD Internati<strong>on</strong>al Journal of Electrical, Electr<strong>on</strong>ics & Communicati<strong>on</strong> Engineering, Vol. 2 No. 11 November 2012 / 889<br />

ISSN No. 2231-3346 (Online), 2319-2232 (Print) © VSRD Internati<strong>on</strong>al Journals : www.<strong>vsrd</strong><strong>journals</strong>.com<br />

REVIEW ARTICLE<br />

A LITERATURE SURVEY ON Z-SOURCE INVERTER<br />

1Vrushali Suresh Neve, 2 P.H. Zope* and 3 S.R. Suralkar<br />

1Research Scholar, 2 Professor, 3 Professor &HOD, 1,2,3 Department of Electr<strong>on</strong>ics & Tele-Communicati<strong>on</strong> Engineering,<br />

SSBT’s College of Engineering & Technology, Jalga<strong>on</strong>, Maharashtra, INDIA.<br />

*Corresp<strong>on</strong>ding Author : phzope@gmail.com<br />

ABSTRACT<br />

This paper presents an impedance-<strong>source</strong> (or impedance-fed) power c<strong>on</strong>verter (abbreviated as Z-<strong>source</strong> c<strong>on</strong>verter) (ZSC) and its c<strong>on</strong>trol<br />

method for implementing dc-to-ac, ac-to-dc, ac-to-ac, and dc-to-dc power c<strong>on</strong>versi<strong>on</strong>. The Z-<strong>source</strong> c<strong>on</strong>verter employs a unique impedance<br />

network (or circuit) to couple the c<strong>on</strong>verter main circuit to the power <strong>source</strong>, thus providing unique features that cannot be obtained in the<br />

traditi<strong>on</strong>al voltage-<strong>source</strong> (or voltage-fed) c<strong>on</strong>verter (VSC) and current-<strong>source</strong> (or current-fed) c<strong>on</strong>verter (CSC) where a capacitor and<br />

inductor are used, respectively. The Z-<strong>source</strong> c<strong>on</strong>verter (ZSC) overcomes the c<strong>on</strong>ceptual and theoretical barriers and limitati<strong>on</strong>s of the<br />

traditi<strong>on</strong>al voltage-<strong>source</strong> c<strong>on</strong>verter (abbreviated as V-<strong>source</strong> c<strong>on</strong>verter) and current-<strong>source</strong> c<strong>on</strong>verter (abbreviated as I-<strong>source</strong> c<strong>on</strong>verter)<br />

and provides a novel power c<strong>on</strong>versi<strong>on</strong> c<strong>on</strong>cept. The Z-<strong>source</strong> c<strong>on</strong>cept can be applied to all dc-to-ac, ac-to-dc, ac-to-ac, and dc-to-dc power<br />

c<strong>on</strong>versi<strong>on</strong>.<br />

Keywords : Voltage Source Inverter, Current Source Inverter, Z-Source Inverter.<br />

1. INTRODUCTION<br />

There exist two traditi<strong>on</strong>al c<strong>on</strong>verters: voltage <strong>source</strong> (VSI)<br />

and current <strong>source</strong> (CSI). Fig.1 shows the traditi<strong>on</strong>al<br />

single-phase voltage-<strong>source</strong> c<strong>on</strong>verter (abbreviated as V-<br />

<strong>source</strong> c<strong>on</strong>verter) structure. A dc voltage <strong>source</strong> supported<br />

by a relatively large capacitor feeds the main c<strong>on</strong>verter<br />

circuit, to a single-phase circuit. The dc voltage <strong>source</strong> can<br />

be a battery, fuel-cell stack, diode rectifier, and/or capacitor.<br />

Four switches are used in the main circuit; each is<br />

traditi<strong>on</strong>ally composed of a power transistor and an antiparallel<br />

(or freewheeling) diode to provide bidirecti<strong>on</strong>al<br />

current flow and unidirecti<strong>on</strong>al voltage blocking capability.<br />

The V-<strong>source</strong> c<strong>on</strong>verter is widely used.<br />

<br />

<br />

additi<strong>on</strong>al dc-dc boost c<strong>on</strong>verter is needed to obtain a<br />

desired ac output. The additi<strong>on</strong>al power c<strong>on</strong>verter stage<br />

increases system cost and lowers efficiency.<br />

The upper and lower devices of each leg cannot be<br />

gated <strong>on</strong> simultaneously either by purpose or by EMI<br />

noise. Otherwise, a shoot-through would occur and<br />

destroy the devices. The shoot-through problem by<br />

electromagnetic interference (EMI) noise’s misgating<strong>on</strong><br />

is a major killer to the c<strong>on</strong>verter’s reliability. Dead<br />

time to block both upper and lower devices has to be<br />

provided in the V-<strong>source</strong> c<strong>on</strong>verter, which causes<br />

waveform distorti<strong>on</strong>, etc.<br />

An output LC filter is needed for providing a sinusoidal<br />

voltage compared with the current-<strong>source</strong> <strong>inverter</strong>,<br />

which causes additi<strong>on</strong>al power loss and c<strong>on</strong>trol<br />

complexity.<br />

Fig. 2 shows the traditi<strong>on</strong>al single-phase current-<strong>source</strong><br />

c<strong>on</strong>verter (abbreviated as I-<strong>source</strong> c<strong>on</strong>verter) structure.<br />

Fig. 1 : V-Source C<strong>on</strong>verter<br />

However, it has the following c<strong>on</strong>ceptual and theoretical<br />

barriers and limitati<strong>on</strong>s :<br />

The ac output voltage is limited below and cannot<br />

exceed the dc-rail voltage or the dc-rail voltage has to<br />

be greater than the ac input voltage. Therefore, the V-<br />

<strong>source</strong> <strong>inverter</strong> is a buck (step-down) <strong>inverter</strong> for dc-toac<br />

power c<strong>on</strong>versi<strong>on</strong> and the V-<strong>source</strong> c<strong>on</strong>verter is a<br />

boost (step-up) rectifier (or boost c<strong>on</strong>verter) for ac-todc<br />

power c<strong>on</strong>versi<strong>on</strong>. For applicati<strong>on</strong>s where over drive<br />

is desirable and the available dc voltage is limited, an<br />

Fig. 2 : I-Source C<strong>on</strong>verter<br />

A dc current <strong>source</strong> feeds the main c<strong>on</strong>verter circuit, to a


Vrushali Suresh Neve, P.H. Zope and S.R. Suralkar VSRDIJEECE, Vol. II (XI), 2012 / 890<br />

single-phase. The dc current <strong>source</strong> can be a relatively large<br />

dc inductor fed by a voltage <strong>source</strong> such as a battery, fuelcell<br />

stack, diode rectifier, or thyristor c<strong>on</strong>verter. Four<br />

switches are used in the main circuit; each is traditi<strong>on</strong>ally<br />

composed of a semic<strong>on</strong>ductor switching device with reverse<br />

block capability such as a gate-turn-off thyristor (GTO) and<br />

SCR or a power transistor with a series diode to provide<br />

unidirecti<strong>on</strong>al current flow and bidirecti<strong>on</strong>al voltage<br />

blocking.<br />

However, the I-<strong>source</strong> c<strong>on</strong>verter has the following<br />

c<strong>on</strong>ceptual and theoretical barriers and limitati<strong>on</strong>s :<br />

The ac output voltage has to be greater than the original<br />

dc voltage that feeds the dc inductor or the dc voltage<br />

produced is always smaller than the ac input voltage.<br />

Therefore, the I-<strong>source</strong> <strong>inverter</strong> is a boost <strong>inverter</strong> for<br />

dc-to-ac power c<strong>on</strong>versi<strong>on</strong> and the I-<strong>source</strong> c<strong>on</strong>verter is<br />

a buck rectifier (or buck c<strong>on</strong>verter) for ac-to-dc power<br />

c<strong>on</strong>versi<strong>on</strong>. For applicati<strong>on</strong>s where a wide voltage<br />

range is desirable, an additi<strong>on</strong>al dc–dc buck (or boost)<br />

c<strong>on</strong>verter is needed. The additi<strong>on</strong>al power c<strong>on</strong>versi<strong>on</strong><br />

stage increases system cost and lowers efficiency.<br />

At least <strong>on</strong>e of the upper devices and <strong>on</strong>e of the lower<br />

devices have to be gated <strong>on</strong> and maintained <strong>on</strong> at any<br />

time. Otherwise, an open circuit of the dc inductor<br />

would occur and destroy the devices. The open-circuit<br />

problem by EMI noise’s misgating-off is a major<br />

c<strong>on</strong>cern of the c<strong>on</strong>verter’s reliability. Overlap time for<br />

safe current commutati<strong>on</strong> is needed in the I-<strong>source</strong><br />

c<strong>on</strong>verter, which also causes waveform distorti<strong>on</strong>, etc.<br />

The main switches of the I-<strong>source</strong> c<strong>on</strong>verter have to<br />

block reverse voltage that requires a series diode to be<br />

used in combinati<strong>on</strong> with high-speed and highperformance<br />

transistors such as insulated gate bipolar<br />

transistors (IGBTs). This prevents the direct use of lowcost<br />

and high-performance IGBT modules and<br />

intelligent power modules (IPMs).<br />

In additi<strong>on</strong>, both the V-<strong>source</strong> c<strong>on</strong>verter and the I-<strong>source</strong><br />

c<strong>on</strong>verter have the following comm<strong>on</strong> problems :<br />

1. They are either a boost or a buck c<strong>on</strong>verter and<br />

cannot be a buck–boost c<strong>on</strong>verter. That is, their obtainable<br />

output voltage range is limited to either greater or smaller<br />

than the input voltage.<br />

2. Their main circuits cannot be interchangeable. In<br />

other words, neither the V-<strong>source</strong> c<strong>on</strong>verter main circuit can<br />

be used for the I-<strong>source</strong> c<strong>on</strong>verter, nor vice versa.<br />

3. They are vulnerable to EMI noise in terms of<br />

reliability.<br />

impedance-fed) power c<strong>on</strong>verter (abbreviated as Z-<strong>source</strong><br />

c<strong>on</strong>verter) and its c<strong>on</strong>trol method for implementing dc-toac,<br />

ac-to-dc, ac-to-ac, and dc-to-dc power c<strong>on</strong>versi<strong>on</strong>. Fig.3<br />

shows the general Z-<strong>source</strong> c<strong>on</strong>verter structure. It employs<br />

a unique impedance network (or circuit) to couple the<br />

c<strong>on</strong>verter main circuit to the power <strong>source</strong>, load, or another<br />

c<strong>on</strong>verter, for providing unique features that cannot be<br />

observed in the traditi<strong>on</strong>al Voltage and current <strong>source</strong><br />

c<strong>on</strong>verters where a capacitor and inductor are used,<br />

respectively. The Z-<strong>source</strong> c<strong>on</strong>verter overcomes limitati<strong>on</strong>s<br />

of the traditi<strong>on</strong>al voltage <strong>source</strong> c<strong>on</strong>verter and current<br />

<strong>source</strong> c<strong>on</strong>verter and provides a novel power c<strong>on</strong>versi<strong>on</strong><br />

c<strong>on</strong>cept.<br />

Fig. 3 : General Structure of the Z-Source C<strong>on</strong>verter<br />

Fig. 4 : Z-Source C<strong>on</strong>verter Structure Using the Anti-<br />

Parallel Combinati<strong>on</strong> of Switching Device and Diode<br />

2. Z-SOURCE CONVERTER<br />

The Z-<strong>source</strong> c<strong>on</strong>verter (ZSC) is a newly proposed power<br />

c<strong>on</strong>versi<strong>on</strong> c<strong>on</strong>cept that is very promising in the above<br />

menti<strong>on</strong>ed areas of power c<strong>on</strong>diti<strong>on</strong>ing especially in<br />

alternative energy <strong>source</strong>s and distributed generati<strong>on</strong>. To<br />

overcome the problems of the traditi<strong>on</strong>al voltage <strong>source</strong> and<br />

current <strong>source</strong> c<strong>on</strong>verters, in this an impedance-<strong>source</strong> (or<br />

Fig. 5 : Z-Source C<strong>on</strong>verter Structure Using the Series<br />

Combinati<strong>on</strong> of Switching Device and Diode


Vrushali Suresh Neve, P.H. Zope and S.R. Suralkar VSRDIJEECE, Vol. II (XI), 2012 / 891<br />

In Fig.3, a two-port network that c<strong>on</strong>sists of a split-inductor<br />

L1 and L2 and capacitors C1 and C2 and c<strong>on</strong>nected in X<br />

shape is employed to provide an impedance <strong>source</strong> (Z<strong>source</strong>)<br />

coupling the c<strong>on</strong>verter (or <strong>inverter</strong>) to the dc <strong>source</strong>,<br />

load, or another c<strong>on</strong>verter. The dc <strong>source</strong>/or load can be<br />

either a voltage or a current <strong>source</strong>/or load. Therefore, the<br />

dc <strong>source</strong> can be a battery, diode rectifier, thyristor<br />

c<strong>on</strong>verter, fuel cell, an inductor, a capacitor, or a<br />

combinati<strong>on</strong> of those. Switches used in the c<strong>on</strong>verter can be<br />

a combinati<strong>on</strong> of switching devices and diodes such as the<br />

anti-parallel combinati<strong>on</strong> as shown in Fig.4, the series<br />

combinati<strong>on</strong> as shown in Fig.5 As examples, Fig 4 & 5.<br />

Shows two single-phase Z-<strong>source</strong> <strong>inverter</strong> c<strong>on</strong>figurati<strong>on</strong>s.<br />

The inductance and capacitance can be provided through a<br />

split inductor or two separate inductors. The Z-<strong>source</strong><br />

c<strong>on</strong>cept can be applied to all dc-to-ac, ac-to-dc, ac-to-ac,<br />

and dc-to-dc power c<strong>on</strong>versi<strong>on</strong>.<br />

3. Z-SOURCE INVERTER<br />

Z-<strong>source</strong> <strong>inverter</strong> (ZSI) which is based <strong>on</strong> Z-<strong>source</strong> network<br />

can buck and boost the output AC voltage, which is not<br />

possible using traditi<strong>on</strong>al voltage <strong>source</strong> or current <strong>source</strong><br />

<strong>inverter</strong>s.<br />

Also the ZSI has the unique ability to allow the dc-link of<br />

the <strong>inverter</strong> to be shorted, which is not possible in the<br />

traditi<strong>on</strong>al voltage <strong>source</strong> <strong>inverter</strong>s. This improves the<br />

reliability of the circuit .Actually c<strong>on</strong>cept of boosting the<br />

input voltage is based <strong>on</strong> the ratio of “shoot-through” time<br />

to the whole switching period.<br />

Z-<strong>source</strong> c<strong>on</strong>verter is shown in Fig.6 where an impedance<br />

network is placed between d.c. link and <strong>inverter</strong>. Z-<strong>source</strong><br />

<strong>inverter</strong> (ZSI) provides a greater voltage than the d.c. link<br />

voltage. It reduces the inrush current & horm<strong>on</strong>ics in the<br />

current because of two inductors in z <strong>source</strong> network. It<br />

forms a sec<strong>on</strong>d order filter &handles the undesirable voltage<br />

sags of the d.c. voltage <strong>source</strong>.<br />

Fig. 7 : Single Phase Z-Source Inverter<br />

Fig. 7 shows a topology of the single phase Z-<strong>source</strong><br />

<strong>inverter</strong>, where the impedance network is placed between<br />

the power <strong>source</strong> and the single phase <strong>inverter</strong> .The<br />

presence of 2 inductors & 2 capacitors in Z-<strong>source</strong> network,<br />

allows both switches of same phase leg ON state<br />

simultaneously, called as shoot-through state & gives<br />

boosting capability to the <strong>inverter</strong> without damaging the<br />

switching devices. During shoot through state energy is<br />

transferred From capacitor To inductor & hence Z-<strong>source</strong><br />

<strong>inverter</strong>( ZSI) gains the voltage boosting capability .Diode is<br />

required to prevent the discharge of overcharged Capacitor<br />

through the <strong>source</strong>.<br />

4. SWITCHING STATES OF A SINGLE<br />

PHASE Z-SOURCE INVERTER<br />

Switching<br />

Output<br />

S1 S2 S3 S4<br />

States<br />

Voltage<br />

Active<br />

States<br />

Zero<br />

States<br />

1 0 0 1 Finite<br />

0 1 1 0 Voltage<br />

1 0 1 0<br />

0 1 0 1<br />

Zero<br />

Shoot<br />

Through<br />

States<br />

1 1 S3 S4<br />

S1 S2 1 1<br />

1 1 1 1<br />

Zero<br />

Fig. 6 : Z-Source Inverter<br />

As shown in table, a single phase Z-<strong>source</strong> <strong>inverter</strong> has five<br />

possible switching states: two active states (vectors) when<br />

the dc voltage is c<strong>on</strong>nected across the load, two zero states<br />

(vectors) when the load terminals are shorted through either<br />

the lower or the upper two switches and <strong>on</strong>e shoot through<br />

state (vector) when the load terminals are shorted through<br />

both the upper and the lower switches of any <strong>on</strong>e leg or two<br />

legs. These switching states and their combinati<strong>on</strong>s<br />

introduce a new PWM method for the Z- Source <strong>inverter</strong> [2,<br />

7, 12].


Vrushali Suresh Neve, P.H. Zope and S.R. Suralkar VSRDIJEECE, Vol. II (XI), 2012 / 892<br />

Fig.8 shows the operating states of the single phase Z-<br />

<strong>source</strong> <strong>inverter</strong> in shoot through states that two switches of<br />

<strong>on</strong>e phase leg or two phase legs are turned <strong>on</strong><br />

simultaneously.<br />

v i = V c -V L = 2V C - V dc … (4)<br />

Therefore the average DC-link voltage across the <strong>inverter</strong><br />

bridge over <strong>on</strong>e switching cycle (T) is:<br />

… (5)<br />

By applying T 1 = T -T O in Eq.5:<br />

… (6)<br />

Where Do is the shoot through duty cycle and Vd, is the<br />

input voltage <strong>source</strong>.<br />

5. SINGLE-PHASE Z-SOURCE INVERTER<br />

TOPOLOGY<br />

There are two basic Z-<strong>source</strong> c<strong>on</strong>verter topologies,<br />

including voltage-fed and current-fed, as shown in Fig.9.<br />

The Z-<strong>source</strong> networks are symmetric in these topologies. S 1<br />

and S 2 are turned <strong>on</strong> and off in complement. Defining the<br />

duty ratio of S 1 as D, then we can get the relati<strong>on</strong>ship<br />

between voltage ratio and D of voltage-fed and current-fed<br />

topologies, respectively:<br />

Fig. 8 : Operating Modes of a Single Phase Z-Source<br />

Inverter (A) Shoot through Zero State (B) N<strong>on</strong> Shoot<br />

through States<br />

… (7)<br />

In Fig.8-a, a diode placed at the input side is reverse biased<br />

and the capacitors charge the inductors [9] and the voltage<br />

across the inductors is:<br />

V L1 = V C1 , V L2 =V C2 … (1)<br />

With the assumpti<strong>on</strong> of symmetric impedance network (C 1 =<br />

C 2 =C and L 1 =L 2 =L), it can be observed that V L1 = V L2 = V L<br />

and I L1 = I L2 =I L and the DC-link voltage across the <strong>inverter</strong><br />

bridge during a shoot through interval (To ) is:<br />

v i = 0 … (2)<br />

Fig.8-b shows the Z-<strong>source</strong> <strong>inverter</strong> in the traditi<strong>on</strong>al active<br />

and null states and due to a symmetric Z-network, inductors<br />

current (I L1 , I L2 ) and capacitors current (I C1 , I C2 ) are equal.<br />

The diode at the input side is turned <strong>on</strong> and the voltage<br />

across the inductors is:<br />

V L = V dc - V C … (3)<br />

The DC-link voltage across the <strong>inverter</strong> bridge during a n<strong>on</strong>shoot<br />

through interval (Ti ) is:<br />

Fig. 9 : Basic Topologies of Z-Source C<strong>on</strong>verter<br />

Fig.10 shows the voltage gain versus D of voltage-fed and


Vrushali Suresh Neve, P.H. Zope and S.R. Suralkar VSRDIJEECE, Vol. II (XI), 2012 / 893<br />

current-fed topologies, respectively. For voltage-fed<br />

topology, it clearly shows that there are two disc<strong>on</strong>tinuous<br />

operati<strong>on</strong> regi<strong>on</strong>s. For current-fed topology, we can see that<br />

the output voltage vary c<strong>on</strong>tinuously. When D is less than<br />

0.5, output voltage is in-phase with input voltage. When D<br />

is greater than 0.5, output voltage is out-of-phase with input<br />

voltage. This unique feature can be utilized to realize DC-<br />

AC power c<strong>on</strong>versi<strong>on</strong>, as shown in Fig.11.<br />

Fig. 11 : Single-Phase Z-Source Inverter Topology<br />

6. OPERATING PRINCIPLE OF SINGLE-<br />

PHASE Z-SOURCE INVERTER<br />

The duty ratio of S<br />

1<br />

is D and the coupled inductor of L<br />

1<br />

and<br />

L<br />

2<br />

is M. Two states exist in <strong>on</strong>e switching period, and Fig.12<br />

shows their equivalent circuits. In state 1, switch S<br />

1<br />

is turned<br />

<strong>on</strong> and S<br />

2<br />

is turned off. The time interval in this state is DT,<br />

where T is the switching period, as shown in Fig. 12 (a). We<br />

can get<br />

Fig. 10 : Voltage Gain Versus D of Two Basic Topologies<br />

Fig.11 (a) shows the basic single-phase Z-<strong>source</strong> <strong>inverter</strong><br />

topology. v i = v c can be derived easily in steady state from<br />

Fig.11(a), then we can get the improved topology with input<br />

and output sharing the same ground, as shown in Fig.11(b).<br />

The unsymmetrical Z-<strong>source</strong> network is composed of input<br />

voltage <strong>source</strong> v i , capacitor C, and inductors L<br />

1<br />

, L<br />

2<br />

, where<br />

L<br />

1<br />

and L<br />

2<br />

can be coupled inductors with any coupled factor.


Vrushali Suresh Neve, P.H. Zope and S.R. Suralkar VSRDIJEECE, Vol. II (XI), 2012 / 894<br />

In steady state, we get,<br />

Fig. 12 : Equivalent Circuits in One Switching Period<br />

Suppose, v 0 = V sin ωt .substituting to (11), we get :<br />

While A=V/v i<br />

Substituting (12) to (11), we get :<br />

i L2 = i o (1- A sin ωt) … (13)<br />

In state 2, S<br />

2<br />

is turned <strong>on</strong> and S<br />

1<br />

is turned off. The time<br />

interval in this state is (1-D)T, as shown in Fig. 12 (b). We<br />

can get,<br />

The voltage stress across the switches is :<br />

V ds1 = V ds2 =2V i + V … (14)<br />

The peak current across the switches is :<br />

Î p1 = Î p2 = Î L1 + Î L2 = Î 0 / D … (15)<br />

where Î L1, Î L2 , Î 0 are peak values of iL1, iL2, io,<br />

respectively.<br />

As can be seen from Fig.12 (b), in the interval (1-D)T, iL1<br />

charges C, so the Z-<strong>source</strong> capacitor voltage ripple can be<br />

expressed as :<br />

From (8) and (9), we can get the averaged equati<strong>on</strong><br />

i L1 can be expressed as :<br />

By instituting (12) and (17) in (16) ,we get :<br />

From (18), we can see that are there is the fundamental and<br />

its double frequency in the Z-<strong>source</strong> capacitor voltage<br />

ripple. The input current can be expressed as :


Vrushali Suresh Neve, P.H. Zope and S.R. Suralkar VSRDIJEECE, Vol. II (XI), 2012 / 895<br />

where K =1/k T s =1.<br />

7. ONE-CYCLE CONTROL STRATEGY<br />

The realizati<strong>on</strong> of the <strong>on</strong>e-cycle c<strong>on</strong>trolled single-phase Z-<br />

<strong>source</strong> <strong>inverter</strong> is shown in Fig..13 Fig.14 shows the<br />

principle waveforms in steady state.<br />

In steady state, the average voltage across inductor L 1 is 0.<br />

We get :<br />

From (22) and (23), we get :<br />

Therefore :<br />

Fig. 13 : One-Cycle C<strong>on</strong>trolled Single-Phase Z-Source<br />

Inverter<br />

Fig. 14 : Principle Waveforms<br />

When the clock signal arrives, S1 is turned off and S2 is<br />

turned <strong>on</strong>. Then Vds(S1) is integrated from zero. The<br />

integrati<strong>on</strong> value is :<br />

CSI VSI ZSI<br />

As inductor is used<br />

in the d.c link, the<br />

<strong>source</strong> impedance<br />

As capacitor is<br />

used in the d.c<br />

link, it acts as a<br />

As capacitor &<br />

inductor is used<br />

in the d.c link, it<br />

is high. It acts as a low impedance acts as a c<strong>on</strong>stant<br />

c<strong>on</strong>stant current voltage <strong>source</strong>. high impedance<br />

<strong>source</strong>.<br />

A CSI is capable of<br />

withstanding short<br />

circuit across any<br />

two of its output<br />

terminals. Hence<br />

momentary short<br />

circuit <strong>on</strong> load and<br />

misfiring of<br />

switches are<br />

acceptable.<br />

Power loss should<br />

be high because of<br />

filter.<br />

Lower efficiency<br />

because<br />

of high power loss.<br />

A VSI is more<br />

dangerous<br />

situati<strong>on</strong> as the<br />

parallel capacitor<br />

feeds more<br />

powering to the<br />

fault.<br />

Power loss is<br />

high.<br />

Efficiency<br />

should be low<br />

because of<br />

power loss high.<br />

Voltage <strong>source</strong>.<br />

In ZSI misfiring<br />

of the switches<br />

sometimes are<br />

also acceptable.<br />

Power loss should<br />

be low.<br />

Higher efficiency<br />

because of less<br />

power loss.<br />

Where k is the integrati<strong>on</strong> factor, when the integrati<strong>on</strong> value<br />

reaches Vi-v ref , the integrator resets. S1 is then turned <strong>on</strong> and<br />

S2 is turned off. D is determined as :<br />

The main circuits<br />

cannot be<br />

interchangeable.<br />

This is used in <strong>on</strong>ly<br />

buck or boost<br />

operati<strong>on</strong> of<br />

<strong>inverter</strong>.<br />

The main circuit<br />

cannot be<br />

interchangeable<br />

here also.<br />

This is also used<br />

in <strong>on</strong>ly a buck or<br />

boost operati<strong>on</strong><br />

of <strong>inverter</strong>.<br />

Here the main<br />

circuits are<br />

Interchangeable.<br />

This is used in<br />

both buck and<br />

boost operati<strong>on</strong> of<br />

<strong>inverter</strong>.<br />

The average value of Vds(S1) is :


Vrushali Suresh Neve, P.H. Zope and S.R. Suralkar VSRDIJEECE, Vol. II (XI), 2012 / 896<br />

8. CONCLUSION<br />

Z-Source C<strong>on</strong>verter is a novel c<strong>on</strong>cept which helps to<br />

implement all dc-to-ac, ac-to-dc, ac-to-ac, and dc-to-dc<br />

power c<strong>on</strong>versi<strong>on</strong> in a significant low cost system as<br />

compared to traditi<strong>on</strong>al <strong>inverter</strong>.ZSI can be used in buck and<br />

boost operati<strong>on</strong> From Study, Z-Source C<strong>on</strong>verter having<br />

more reliability and Higher Efficiency than traditi<strong>on</strong>al<br />

c<strong>on</strong>verters.<br />

9. REFERENCES<br />

[1] T. Chandrashekhar , M. Veerachary “C<strong>on</strong>trol of Single-Phase<br />

Z-<strong>source</strong> Inverter for a Grid C<strong>on</strong>nected System”, 2009 Third<br />

Internati<strong>on</strong>al C<strong>on</strong>ference <strong>on</strong> Power Systems, Kharagpur,<br />

INDIA December 27-29<br />

[2] S.W.Mohod, P.H.Zope, Modeling & Simulati<strong>on</strong> Of Signal<br />

Phase Switch-Mode Inverter For Utility Interface ICSCI<br />

2007. Held At Hyderabad<br />

[3] S.W.Mohod, P.H.Zope, Modeling And Simulati<strong>on</strong> Of Single<br />

Phase Switch –Mode Inverter For Utility Interface., Nati<strong>on</strong>al<br />

IEEE C<strong>on</strong>ference NCDSP 07, Bandra, Mumbai<br />

[4] M. Shen, F. Z. Peng "Operating modes and characteristics of<br />

the Z-<strong>source</strong> <strong>inverter</strong> with small inductance" In proc. EEE<br />

IAS, 2005.<br />

[5] P. C. Loh, D. M. Vilathgamuwa, Y. S. Lai , G. T. Chua, et al,<br />

“Pulse-width modulati<strong>on</strong> of Z-<strong>source</strong> <strong>inverter</strong>s,” IEEE Trans.<br />

<strong>on</strong> Power Electr<strong>on</strong>ics, vol. 20, no. 6, pp. 1346-1355,<br />

November 2005.<br />

[6] X. P. Fang,Z. M. Qian and F. Z. Peng, “Single-phase Z-<br />

Source PWM AC-AC c<strong>on</strong>verters,” IEEE Power Electr<strong>on</strong>ics<br />

Letters, vol.3, no.4, pp.121-124, December 2005.<br />

[7] Jafar Adabi, Firuz Zare, "Dynamic Analysis of a Z-<strong>source</strong><br />

<strong>inverter</strong>", ICEE2006, Tehran, Iran, May 2006.<br />

[8] Jafar Adabi, Firuz Zare, "Unipolar Hysteresis Current C<strong>on</strong>trol<br />

for a Single Phase Z-Source Inverter", AUPEC 2006,<br />

Melbourne, Nov 2006.<br />

[9] M. S. Shen, J. Wang, A. Joseph, F. Z. Peng, et al, “C<strong>on</strong>stant<br />

Boost c<strong>on</strong>trol of the Z-<strong>source</strong> <strong>inverter</strong> to minimize current<br />

ripple and voltage stress,” IEEE Trans. <strong>on</strong> Industry<br />

Applicati<strong>on</strong>s, vol. 42, no. 3, pp. 770-777, May/June 2006.<br />

[10] Jafar Adabi, Firuz Zare," Transient Analysis of a Z-<strong>source</strong><br />

Inverter with an Asymmetrical Impedance Network", AUPEC<br />

2006, Melbourne, Nov 2006.<br />

[11] Miaosen Shen, Alan Joseph, Jin Wang, Fang Z. Peng, and<br />

D<strong>on</strong>ald J. Adams "Comparis<strong>on</strong> of Traditi<strong>on</strong>al Inverters and Z-<br />

Source Inverter for Fuel Cell Vehicles", In proc. WEEE<br />

IAS'04, 2004.<br />

[12] F. Z. Peng, M. Shen, A. Joseph, L. M. Tolbert, D. J. Adams,<br />

"Maximum C<strong>on</strong>stant Boost C<strong>on</strong>trol of the Z- Source Inverter"<br />

In proc. EEE IAS'04, 2004.<br />

[13] Y. S. Xue, L. C. Chang, S. B. Kjær, “Topologies of singlephase<br />

<strong>inverter</strong>s for small distributed power generators: an<br />

overview,” IEEE Trans. <strong>on</strong> Power Electr<strong>on</strong>ics, vol.19, no.5,<br />

pp.1305-1314, September 2004.<br />

[14] P.C. Loh, D. M. Vilathgamuwa, Y. S. Lai, G. T. Lai, Y. Li,<br />

"Pulse- Width Modulati<strong>on</strong> of Z- Source Inverters", In proc.<br />

EEE IAS'04, 2004.<br />

[15] F. Z. Peng, M. Shen, Z- Qian, "Maximum Boost C<strong>on</strong>trol of Z-<br />

Source Inverter", In Proc. of EEE PESC 2004.<br />

[16] F. Z. Peng, "Z- Source Inverter for Motor Drives", in proc,<br />

of EEE PESC 2004.<br />

[17] F. Z. Peng, “Z-<strong>source</strong> <strong>inverter</strong>,” IEEE Trans. <strong>on</strong> Industry<br />

Applicati<strong>on</strong>s, vol. 39, no. 2, pp. 504-510, March/April 2003.<br />

[18] B. K. Bose, Modern Power Electr<strong>on</strong>ics and AC Drives.<br />

Upper Saddle River, NJ: Prentice-Hall PTR, 2002.<br />

[19] N. Vázquez, J. Almazan, J. Álvarez, C. Aguilar, and J. Arau,<br />

“Analysis and experimental study of the buck, boost and<br />

buck-boost <strong>inverter</strong>s,” IEEE PESC, Charlest<strong>on</strong>, SC, 1999, pp.<br />

801–806.<br />

[20] N. Kasa, T. Iida, and H. Iwamoto, “An <strong>inverter</strong> using buckboost<br />

type chopper circuits for popular small-scale<br />

photovoltaic power system,” IEEE IECON, San Jose, CA,<br />

1999, pp. 185–190.<br />

[21] K. M. Smedley and S. Cuk, “One-cycle c<strong>on</strong>trol of switching<br />

c<strong>on</strong>verters,” IEEE Trans. <strong>on</strong> Power Electr<strong>on</strong>ics, vol.10, no. 6,<br />

pp. 625-633, November 1995.<br />

[22] K. M. Smedley and S. Cuk, “Dynamics of <strong>on</strong>e-cycle<br />

c<strong>on</strong>trolled Cuk c<strong>on</strong>verter,” IEEE Trans. <strong>on</strong> Power<br />

Electr<strong>on</strong>ics, vol. 10, no. 6, pp: 634-639, November 1995.<br />

[23] N. Mohan, W.P.Robbin and T.Undeland, Power Electr<strong>on</strong>ics:<br />

C<strong>on</strong>verters, Applicati<strong>on</strong>s and Design, 2nd Ed. New York:<br />

Wiley, 1995.<br />

[24] Muhammad H. Rashid, 1993. Power Electr<strong>on</strong>ics Circuits<br />

Devices and Applicati<strong>on</strong>s. 2nd Edn. Englewood Cliffs, N.J.,<br />

Prentice Hall.<br />

[25] I .J. Holtz, "Pulse Width Modulati<strong>on</strong>- a <str<strong>on</strong>g>survey</str<strong>on</strong>g>", EEE Trans.<br />

Ind. Electr<strong>on</strong>, Vol. 39, pp. 410-420, Dec. 1992.<br />

[26] K.Torborg , Power Electr<strong>on</strong>ics ,Prentice Hall Internati<strong>on</strong>al<br />

(U.K.) Ltd.,L<strong>on</strong>dan 1988.<br />

•••

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!