28.11.2014 Views

Excited state properties p p - WIEN 2k

Excited state properties p p - WIEN 2k

Excited state properties p p - WIEN 2k

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Excited</strong> <strong>state</strong> <strong>properties</strong><br />

p<br />

within <strong>WIEN</strong><strong>2k</strong><br />

Claudia Ambrosch-Draxl, University of Leoben, Austria<br />

Chair of Atomistic Modelling and Design of Materials


Beyond the ground <strong>state</strong><br />

Basics about light scattering<br />

The dielectric i tensor<br />

The <strong>WIEN</strong><strong>2k</strong> code<br />

Outlook<br />

The program<br />

Input / output<br />

Examples<br />

TDDFT versus manybody perturbation theory<br />

Contents


Light-Matter Interaction


Resonse to external electric field E<br />

Polarizability<br />

Linear approximation<br />

susceptibility χ<br />

conductivity σ<br />

dielectric tensor<br />

∋<br />

Fourier transform<br />

Light-Matter Interaction


The dielectric tensor<br />

Free electrons: the Lindhard formula<br />

Bloch electrons<br />

intraband<br />

interband<br />

Light-Matter Interaction


Interband contributions<br />

Independent particle approximation<br />

RPA<br />

En<br />

nergy<br />

c k<br />

hω<br />

E F<br />

hω<br />

S<br />

E<br />

v k<br />

Light-Matter Interaction


Optical constants<br />

Complex dielectric tensor<br />

Optical conductivity<br />

Complex refractive index<br />

Reflectivity<br />

Absorption coefficient<br />

Loss function<br />

Light-Matter Interaction


Intraband contributions<br />

Dielectric tensor<br />

Ene<br />

ergy<br />

E F<br />

Optical conductivity<br />

Drude-like terms<br />

plasma frequency<br />

Light-Matter Interaction


Sumrules<br />

Light-Matter Interaction


Symmetry<br />

triclinic<br />

monoclinic (α,β=90°)<br />

orthorhombic<br />

tetragonal, hexagonal<br />

cubic<br />

Light-Matter Interaction


Magneto-optics: optics: example<br />

without magnetic field, spin-orbit coupling: cubic<br />

KK<br />

with magnetic field ║z, spin-orbit coupling: tetragonal<br />

KK<br />

KK<br />

Light-Matter Interaction


The Program …


SCF cycle → converged potential<br />

x kgen<br />

→ dense mesh<br />

x lapw1 → Kohn-Sham <strong>state</strong>s (higher E max )<br />

x lapw2 -Fermi → Fermi distribution<br />

optic package<br />

x optic<br />

x joint<br />

x kram<br />

→ momentum matrix elements<br />

→ tensor components<br />

→ optical constants<br />

↔ life time broadening<br />

↔ scissors shift<br />

The Program Flow


optic<br />

Al.inop<br />

2000 1 number of k-points, first k-point<br />

-5.0 2.2 energy window for matrix elements<br />

1 number of cases (see choices)<br />

1 Re <br />

OFF write unsymmetrized matrix elements to file?<br />

Ni.inop<br />

800 1 number of k-points, first k-point<br />

-5.0 50 50 5.0 energy window for matrix elements<br />

3 number of cases (see choices)<br />

1 Re <br />

3 Re<br />

<br />

7 Im <br />

OFF<br />

Choices:<br />

1......Re <br />

2......Re <br />

3......Re <br />

4......Re <br />

5......Re <br />

6......Re <br />

7......Im <br />

8......Im <br />

9......Im <br />

Inputs


joint<br />

Al.injoint<br />

1 18 lower and upper band index<br />

0.000 0.001 1.000 E min , dE, Emax [Ry]<br />

eV<br />

output units eV / Ry<br />

4 switch<br />

1 number of columns to be considered<br />

0.1 0.2 broadening for Drude term(s)<br />

choose gamma for each case!<br />

0...JOINT DOS for each band combination<br />

1...JOINT DOS<br />

sum over all band combinations<br />

2...DOS for each band<br />

3...DOS sum over all bands<br />

4...Im(EPSILON) total<br />

5...Im(EPSILON) for each band combination<br />

6...intraband contributions<br />

7...intraband contributions including band analysis<br />

Inputs


kram<br />

Al.inkram<br />

0.1 broadening gamma<br />

0.0 energy shift (scissors operator)<br />

1 add intraband contributions 1/0<br />

12.6 plasma frequency<br />

0.2 Γ(s) for intraband part<br />

Si.inkram<br />

0.05 broadening gamma<br />

1.00 energy shift (scissors operator)<br />

0<br />

....<br />

80<br />

70 Silicon<br />

60<br />

Imε<br />

50<br />

40<br />

Reε<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

Γ=0.05eV<br />

-20<br />

0 1 2 3 4 5 6<br />

Energy [eV]<br />

Inputs


optic<br />

joint<br />

kram<br />

case.symmat<br />

case.mommat<br />

case.joint<br />

case.epsilon<br />

case.sigmaksigmak<br />

case.refraction<br />

case.absorpabsorp<br />

case.eloss<br />

Outputs


Results …


Convergence<br />

m ε<br />

nterba and Im<br />

I<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

165k<br />

286k<br />

560k<br />

1240k<br />

2456k<br />

3645k<br />

4735k<br />

12.8<br />

12.7 12.6<br />

ω p<br />

12.5<br />

12.4<br />

12.3<br />

12.2<br />

12.1<br />

12.0<br />

0 1000 2000 3000 4000 5000<br />

k-points in IBZ<br />

0<br />

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0<br />

Energy [eV]<br />

Example: Al


Sumrules<br />

N eff<br />

[ele ectrons s]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

165 k-points<br />

4735 k-points<br />

Experiment<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Energy [eV]<br />

Example: Al


Loss function<br />

120<br />

100<br />

Loss fu unctio n<br />

80<br />

intraband<br />

60<br />

40 total<br />

20 interband<br />

0<br />

0 5 10 15 20<br />

Energy [eV]<br />

Example: Al


Band structure<br />

Band structure<br />

16<br />

18<br />

non-relativistic<br />

scalar-relativistic<br />

relativistic<br />

8<br />

10<br />

12<br />

14<br />

16<br />

s<br />

2<br />

4<br />

6<br />

8<br />

rgy [eV]<br />

s<br />

d<br />

f<br />

pd<br />

pf<br />

p<br />

-6<br />

-4<br />

-2<br />

0<br />

Energy<br />

pd<br />

-12<br />

-10<br />

-8<br />

-6<br />

K<br />

X<br />

G<br />

L<br />

W<br />

W<br />

K<br />

X<br />

G<br />

L<br />

W<br />

W<br />

K<br />

X<br />

G<br />

L<br />

W<br />

W<br />

Example: Au


Density of <strong>state</strong>s<br />

4<br />

DOS<br />

[ <strong>state</strong>s per<br />

eV and cell]<br />

3 total<br />

2<br />

1<br />

0<br />

3 d<br />

2<br />

1<br />

0<br />

0.4<br />

0.2<br />

s<br />

0.0<br />

0.4 p<br />

0.2<br />

0.0<br />

0.4<br />

0.2<br />

f<br />

0.0<br />

-10 0 10 20 30 40<br />

Energy [eV]<br />

S / energy 2<br />

joint DOS<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.00<br />

non-relativistic<br />

scalar-relativistic<br />

relativistic<br />

0 5 10 15 20 25<br />

Energy [eV]<br />

Example: Au


Dielectric tensor<br />

joint DOS / ener ergy 2<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

non-relativistic<br />

scalar-relativistic<br />

relativistic<br />

0.00<br />

0 5 10 15 20 25<br />

Energy [eV]<br />

Diele lectric Functio ction<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

Au<br />

12 Ree<br />

non-relativistic<br />

scalar-relativistic<br />

10<br />

8<br />

Ime<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

12<br />

10<br />

relativistic<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-2<br />

0 5 10 15 20 25 30 35<br />

Energy [eV]<br />

Example: Au


Theory versus experiment<br />

K. Glantschnig and C. Ambrosch-Draxl (preprint)<br />

Example: Pt


Whom to ask?<br />

Robert Abt<br />

C. Ambrosch-Draxl and J. O. Sofo<br />

Linear optical <strong>properties</strong> of solids within the full-potential linearized<br />

augmented planewave method<br />

Comp. Phys. Commun. 175, , 1-1414 (2006)<br />

People


… and Beyond


Discrepancies<br />

Ground <strong>state</strong><br />

xc functionals<br />

<strong>Excited</strong> <strong>state</strong><br />

Interpretation in terms of ground <strong>state</strong> <strong>properties</strong><br />

Interpretation within one-particle picture<br />

Response function<br />

Manybody treatment needed<br />

2 routes<br />

Time-dependent d DFT (TDDFT)<br />

Manybody perturbation theroy (MBPT)<br />

Beyond the Ground State


MBPT<br />

mixing of concepts<br />

4 point functions involved<br />

very demanding<br />

2 steps: GW & BSE<br />

linear-response regime<br />

TDDFT<br />

keeps spirit of DFT<br />

2 point functions<br />

less demanding<br />

1 functional needed<br />

in principle one step<br />

in practice: GW needed<br />

generally applicable<br />

linear-response regime<br />

strong laser fields etc.<br />

G. Onida, L. Reining, and A. Rubio, Rev. Mod. Phys. 74, 601 (2002)<br />

Beyond the Ground State

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!