29.11.2014 Views

RANDOM MATRICES and ANDERSON LOCALIZATION - the Milan ...

RANDOM MATRICES and ANDERSON LOCALIZATION - the Milan ...

RANDOM MATRICES and ANDERSON LOCALIZATION - the Milan ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>RANDOM</strong> <strong>MATRICES</strong><br />

<strong>and</strong><br />

<strong>ANDERSON</strong> <strong>LOCALIZATION</strong><br />

Luca G. Molinari<br />

Physics Department<br />

Universita' degli Studi di <strong>Milan</strong>o<br />

Abstract: a particle in a lattice with r<strong>and</strong>om potential is<br />

subject to Anderson localization, which affects low T<br />

transport properties of disordered materials.<br />

After 50 years <strong>the</strong> Anderson model continues to be an<br />

active area of research.<br />

I present some analytic properties of block tridiagonal<br />

matrices, for <strong>the</strong> study of localization in d>1<br />

<strong>Milan</strong>, april 2, 2009


Isaac Newton Institute for<br />

Ma<strong>the</strong>matical Sciences<br />

Ma<strong>the</strong>matics <strong>and</strong> Physics<br />

of Anderson localization:<br />

50 Years After<br />

14 July - 19 December 2008


summary<br />

●<br />

●<br />

●<br />

●<br />

●<br />

The Anderson model<br />

Determinants of block tridiagonal<br />

matrices <strong>and</strong> spectral duality<br />

Jensen's <strong>the</strong>orem <strong>and</strong> <strong>the</strong> spectrum of<br />

exponents.<br />

Energy spectra of non Hermitian<br />

Anderson matrices<br />

The Argument Principle, hole & halo in<br />

complex spectra of tridiagonal matrices


THE <strong>ANDERSON</strong> MODEL<br />

●<br />

●<br />

d=1,2: p.p. spectrum, exponential<br />

localization<br />

d=3: a.c. to p.p. spectrum,<br />

metal-insulator transition


Phase diagram<br />

3D Anderson model<br />

localized states<br />

extended<br />

states


UCF<br />

MIT<br />

●<br />

QUANTUM<br />

CHAOS:<br />

dynamical<br />

localization<br />

●<br />

- sound<br />

- light<br />

- matter<br />

waves<br />

QHE<br />

BEC


●<br />

●<br />

●<br />

Low T conductivity of amorphous semicond.<br />

σ ̴ exp [-(c/T)^⅟4] (Mott, 1979: phononassisted<br />

hopping between localized states)<br />

Weakly disordered metal films 1/σ ̴ -log T<br />

R<strong>and</strong>om alloys<br />

Ref:<br />

B.Kramer <strong>and</strong> A.MacKinnon, Localization: <strong>the</strong>ory <strong>and</strong><br />

experiment, Rep. Progr. Phys. 56 (1993) 1469-1564<br />

● MIT in 2D heterojunctions, Si-MOS ? (PRL, 2008)<br />

●<br />

●<br />

Charge localization & Polaron formation in Na_xWO_3<br />

(MIT with x) (PRL, 2006)<br />

OPTICS!


THEORY<br />

●<br />

Theorems (Spencer, Ishii, Pastur, ...)<br />

●<br />

Kubo formula weak disorder (Stone,<br />

Altshuler, ...)<br />

●<br />

Energy levels <strong>and</strong> b.c. (Thouless,<br />

Hatano & Nelson, level curvatures, ... )<br />

●<br />

Transfer matrix <strong>and</strong> Lyap spectrum<br />

scaling (Kramer&MacKinnon), DMPK eq.,<br />

conductance &scattering (Buttiker <strong>and</strong><br />

L<strong>and</strong>auer),...<br />

●<br />

Supersymmetry, BRM (Efetov, Fyodorov<br />

& Mirlin)


Some basic old ideas<br />

●<br />

●<br />

●<br />

●<br />

Adimensional conductance<br />

g(L)=h/e² L^(d-2)σ<br />

Scattering ( lead-sample-lead)<br />

g ~ tr tt* (t=transm. matrix) → DMPK<br />

Periodic b.c.: Thouless conductance<br />

g ~ d²E/dφ² /Δ (Bloch phase)<br />

One parameter scaling<br />

d(log g) / d(log L) = β(g)


J. Phys. I France 4 (1994) 1469


THE HAMILTONIAN MATRIX<br />

Block Tridiagonal Matrix<br />

A block is Hamiltonian matrix of a section


THE TRANSFER MATRIX<br />

Eigenvalues of T(E) grow (decay) exponentially in <strong>the</strong> number of blocks.<br />

The rates are <strong>the</strong> exponents ξ_a(E)


Anderson D=1<br />

tridiagonal r<strong>and</strong>om matrices<br />

Hatano <strong>and</strong> Nelson (1996)<br />

(Herbert-Jones-Thouless formula)


SPECTRAL DUALITY<br />

z^n is an eigenvalue of T(E)<br />

iff<br />

E is eigenvalue of H(z^n)


determinants<br />

of block tridiagonal matrices<br />

L.G.M, Linear Algebra <strong>and</strong> its Applications 429 (2008) 2221


Anderson model: duality<br />

Exponents describe decay lenghts of<br />

Anderson model. They are obtained from non-<br />

Herm. energy spectrum via Jensen's identity


A formula for <strong>the</strong> exponents<br />

(a deterministic variant of Thouless formula)<br />

m=3<br />

ξ<br />

no formula of Thouless type is known in<br />

D>1 (only for sum of exps, xi=0)


<strong>the</strong> exponents<br />

ξ<br />

m=3, n=50, w=7


non-hermitian energy spectra<br />

(Anderson 2D)<br />

m=5 m=10<br />

n=100, w=7, xi=1.5


Anderson 2D (m=3,n=8)<br />

(xi fixed, change phase)<br />

(change xi <strong>and</strong> phase)


Non-Hermitian tridiagonal<br />

complex matrices I<br />

(with G. Lacagnina)


Non-Hermitian tridiagonal<br />

complex matrices II


BAND <strong>RANDOM</strong> <strong>MATRICES</strong><br />

complex, no symmetry


●<br />

●<br />

●<br />

conclusions<br />

Spectral duality + Jensen's identity<br />

--> exponents of single transfer matrix<br />

in terms of eigenvalues of Hamiltonan<br />

matrix with non-hermitian b.c.<br />

Spectral duality + Argument principle<br />

--> holes in spectrum of Hamiltonian<br />

matrix with non Hermitian b.c.<br />

Theory can be extended to T*T<br />

(Lyapunov exponents)<br />

● ? Metal insulator transition (D=3) ?<br />

● ? B<strong>and</strong> R<strong>and</strong>om Matrices ?


determinants<br />

of tridiagonal matrices


A formula for <strong>the</strong> exponents<br />

(a deterministic variant of Thouless formula)<br />

m=3<br />

ξ<br />

no formula of Thouless type is known in<br />

D>1 (only for sum of exps, xi=0)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!