29.11.2014 Views

Chapter 15 Power Supplies - Webstaff.kmutt.ac.th

Chapter 15 Power Supplies - Webstaff.kmutt.ac.th

Chapter 15 Power Supplies - Webstaff.kmutt.ac.th

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>15</strong><br />

<strong>Power</strong> <strong>Supplies</strong><br />

(Voltage Regulators)


<strong>Power</strong> Supply Diagram<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

2<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Filter Circuits<br />

• The output from <strong>th</strong>e rectifier section is a<br />

pulsating DC.<br />

• The filter circuit reduces <strong>th</strong>e peak-to-peak<br />

pulses to a small ripple voltage.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

3<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Ripple F<strong>ac</strong>tor<br />

After <strong>th</strong>e filter circuit a small<br />

amount of AC is still<br />

remaining. The amount of<br />

ripple voltage can be rated in<br />

terms of ripple f<strong>ac</strong>tor (r).<br />

%r<br />

=<br />

ripple voltage (rms)<br />

dc voltage<br />

=<br />

V<br />

r(rms<br />

V<br />

dc<br />

)<br />

× 100<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

4<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Rectifier Ripple F<strong>ac</strong>tor<br />

Half-Wave<br />

Full-Wave<br />

DC output:<br />

DC output:<br />

V dc = 0.318V m<br />

V dc = 0.636V m<br />

AC ripple output:<br />

AC ripple output:<br />

V =<br />

0.385V<br />

r(rms) 0.385V m<br />

V =<br />

0.308V<br />

r(rms) 0.308V m<br />

Ripple f<strong>ac</strong>tor:<br />

Ripple f<strong>ac</strong>tor:<br />

%r<br />

=<br />

=<br />

V<br />

r(rms)<br />

V<br />

dc<br />

0.385V<br />

0.318V<br />

× 100<br />

m<br />

m<br />

× 100<br />

=<br />

121%<br />

%r<br />

=<br />

=<br />

V<br />

r(rms)<br />

V<br />

dc<br />

0.308<br />

0.636<br />

Vm<br />

Vm<br />

× 100<br />

× 100<br />

=<br />

48%<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

5<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Types of Filter Circuits<br />

Cap<strong>ac</strong>itor Filter<br />

RC Filter<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

6<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Cap<strong>ac</strong>itor Filter<br />

Ripple voltage<br />

V<br />

4<br />

I<br />

3fC<br />

2.4I<br />

dc dc<br />

r(rms) = = =<br />

C<br />

2.4V<br />

R<br />

The larger <strong>th</strong>e cap<strong>ac</strong>itor <strong>th</strong>e<br />

smaller <strong>th</strong>e ripple voltage.<br />

L<br />

dc<br />

C<br />

DC output<br />

V<br />

dc<br />

=<br />

V<br />

m<br />

−<br />

I<br />

dc<br />

4fC<br />

=<br />

V<br />

m<br />

−<br />

4.17I<br />

C<br />

dc<br />

Ripple f<strong>ac</strong>tor<br />

%r<br />

=<br />

V<br />

r(rms)<br />

V<br />

dc<br />

× 100<br />

=<br />

2.4I<br />

CV<br />

dc<br />

dc<br />

× 100<br />

=<br />

2.4<br />

RLC<br />

× 100<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

7<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Diode Ratings wi<strong>th</strong> Cap<strong>ac</strong>itor Filter<br />

The size of <strong>th</strong>e cap<strong>ac</strong>itor increases <strong>th</strong>e current drawn <strong>th</strong>rough <strong>th</strong>e diodes—<br />

<strong>th</strong>e larger <strong>th</strong>e cap<strong>ac</strong>itance, <strong>th</strong>e greater <strong>th</strong>e amount of current.<br />

Peak Current vs. Cap<strong>ac</strong>itance:<br />

CV<br />

I =<br />

t<br />

where<br />

C = cap<strong>ac</strong>itance<br />

V = change in cap<strong>ac</strong>itor voltage during charge/discharge<br />

t = <strong>th</strong>e charge/discharge time<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

8<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


RC Filter Circuit<br />

Adding an RC section fur<strong>th</strong>er<br />

reduces <strong>th</strong>e ripple voltage and<br />

decrease <strong>th</strong>e surge current<br />

<strong>th</strong>rough <strong>th</strong>e diodes.<br />

V′<br />

r(rms)<br />

≈<br />

X<br />

C<br />

R<br />

V<br />

r(rms)<br />

%V<br />

V′ r(rms) = ripple voltage after <strong>th</strong>e RC filter<br />

V r(rms) = ripple voltage before <strong>th</strong>e RC filter<br />

R = resistor in <strong>th</strong>e added RC filter<br />

X C = re<strong>ac</strong>tance of <strong>th</strong>e cap<strong>ac</strong>itor in <strong>th</strong>e added RC filter<br />

V<br />

− V<br />

NL FL<br />

R =<br />

×<br />

VFL<br />

V NL = no-load voltage<br />

V FL = full-load voltage<br />

100%<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

9<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Voltage Regulation Circuits<br />

There are two common types of circuitry for voltage<br />

regulation:<br />

• Discrete Transistors<br />

• IC’s<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

10<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Discrete-Transistor Regulators<br />

Series voltage regulator<br />

Current-limiting circuit<br />

Shunt voltage regulator<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

11<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Series Voltage Regulator Circuit<br />

The series element controls <strong>th</strong>e amount of <strong>th</strong>e input voltage <strong>th</strong>at gets to<br />

<strong>th</strong>e output.<br />

If <strong>th</strong>e output voltage increases (or decreases), <strong>th</strong>e comparator circuit<br />

provides a control signal to cause <strong>th</strong>e series control element to decrease<br />

(or increase) <strong>th</strong>e amount of <strong>th</strong>e output voltage.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

12<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Series Voltage Regulator Circuit<br />

• R 1 and R 2 <strong>ac</strong>t as <strong>th</strong>e sampling circuit<br />

• Zener provides <strong>th</strong>e reference voltage<br />

• Q 2 controls <strong>th</strong>e base current to Q 1<br />

• Q 1 maintains <strong>th</strong>e constant output<br />

voltage<br />

When <strong>th</strong>e output increases:<br />

When <strong>th</strong>e output decreases:<br />

1. The voltage at V 2 and V BE of Q 2<br />

increases<br />

2. The conduction of Q 2 increases<br />

3. The conduction of Q 1 decreases<br />

4. The output voltage decreases<br />

1. The voltage at V 2 and V BE of Q 2<br />

decreases<br />

2. The conduction of Q 2 decreases<br />

3. The conduction of Q 1 increases<br />

4. The output voltage increases<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

13<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Series Voltage Regulator Circuit<br />

The op-amp compares <strong>th</strong>e<br />

Zener diode voltage wi<strong>th</strong><br />

<strong>th</strong>e output voltage (at R 1<br />

and R 2 ) and controls <strong>th</strong>e<br />

conduction of Q 1 .<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

14<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Current-Limiting Circuit<br />

When I L increases:<br />

• The voltage <strong>ac</strong>ross R SC increases<br />

• The increasing voltage <strong>ac</strong>ross R SC drives Q 2 on<br />

• Conduction of Q 2 reduces current for Q 1 and <strong>th</strong>e load<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

<strong>15</strong><br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Shunt Voltage Regulator Circuit<br />

The shunt voltage regulator<br />

shunts current away from<br />

<strong>th</strong>e load.<br />

The load voltage is sampled and fed b<strong>ac</strong>k to a comparator circuit.<br />

If <strong>th</strong>e load voltage is too high, control circuitry shunts more<br />

current away from <strong>th</strong>e load.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

16<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Shunt Voltage Regulator Circuit<br />

When <strong>th</strong>e output voltage increases:<br />

• The Zener current increases<br />

• The conduction of Q 2 increases<br />

• The voltage drop at R s increases<br />

• The output voltage decreases<br />

When <strong>th</strong>e output voltage decreases:<br />

• The Zener current decreases<br />

• The conduction of Q 2 decreases<br />

• The voltage drop at R s decreases<br />

• The output voltage increases<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

17<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Shunt Voltage Regulator Circuit<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

18<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


IC Voltage Regulators<br />

Regulator ICs contain:<br />

• Comparator circuit<br />

• Reference voltage<br />

• Control circuitry<br />

• Overload protection<br />

Types of <strong>th</strong>ree-terminal IC voltage regulators<br />

• Fixed positive voltage regulator<br />

• Fixed negative voltage regulator<br />

• Adjustable voltage regulator<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

19<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Three-Terminal Terminal Voltage Regulators<br />

The specifications for <strong>th</strong>is IC indicate:<br />

• The range of input voltages <strong>th</strong>at can be regulated for a specific range of<br />

output voltage and load current<br />

• Load regulation—variation in output voltage wi<strong>th</strong> variations in load<br />

current<br />

• Line regulation—variation in output voltage wi<strong>th</strong> variations in input<br />

voltage<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

20<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Fixed Positive Voltage Regulator<br />

These ICs provide a fixed positive output voltage.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

21<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Fixed Negative Voltage Regulator<br />

These ICs output a fixed negative output voltage.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

22<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Adjustable Voltage Regulator<br />

These regulators have<br />

adjustable output<br />

voltages.<br />

The output voltage is<br />

commonly selected<br />

using a potentiometer.<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

23<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.


Pr<strong>ac</strong>tical <strong>Power</strong> <strong>Supplies</strong><br />

DC supply (linear power supplies)<br />

Chopper supply (switching power supplies)<br />

TV horizontal high voltage supply<br />

Battery chargers<br />

Electronic Devices and Circuit Theory, 10/e<br />

Robert L. Boylestad and Louis Nashelsky<br />

24<br />

Copyright ©2009 by Pearson Education, Inc.<br />

Upper Saddle River, New Jersey 07458 • All rights reserved.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!