29.11.2014 Views

8-7 Similarity in Right Triangles 8-7 Similarity in Right Triangles

8-7 Similarity in Right Triangles 8-7 Similarity in Right Triangles

8-7 Similarity in Right Triangles 8-7 Similarity in Right Triangles

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Mrs. Aitken’s Integrated 2<br />

Unit 8 Similar and Congruent <strong>Triangles</strong><br />

8-7 <strong>Similarity</strong> <strong>in</strong> <strong>Right</strong> <strong>Triangles</strong><br />

Warm-up<br />

1. Are these triangles similar or not? Why? Similar, AA similarity<br />

postulate<br />

2. F<strong>in</strong>d the value of x <strong>in</strong> the proportion 5 = 10 by cross multiply<strong>in</strong>g.<br />

x 30<br />

x = 15<br />

3. If x 2 = 400, what is x equal to? x = ±20<br />

4. Name three right triangles <strong>in</strong> this figure. ΔACB, ΔADC, ΔBDC<br />

Today and tomorrow we will:<br />

1. Explore properties of right triangles, <strong>in</strong>clud<strong>in</strong>g the Pythagorean<br />

theorem.<br />

2. F<strong>in</strong>d geometric means.<br />

8-7 <strong>Similarity</strong> <strong>in</strong> <strong>Right</strong> <strong>Triangles</strong><br />

Similar right triangles and the Pythagorean theorem<br />

Key term<br />

Altitude – a segment from a vertex of a triangle perpendicular to the l<strong>in</strong>e<br />

conta<strong>in</strong><strong>in</strong>g the opposite side.<br />

Until know, you have used the Pythagorean theorem and its converse without<br />

hav<strong>in</strong>g to prove it. Us<strong>in</strong>g the follow<strong>in</strong>g theorems, we can now prove the<br />

Pythagorean theorem.<br />

8-7 <strong>Similarity</strong> <strong>in</strong> <strong>Right</strong> <strong>Triangles</strong>


Mrs. Aitken’s Integrated 2<br />

Unit 8 Similar and Congruent <strong>Triangles</strong><br />

Similar <strong>Right</strong> <strong>Triangles</strong> theorem<br />

If the altitude is drawn to the hypotenuse of a right triangle, then the two<br />

triangles formed are similar to the orig<strong>in</strong>al triangle and to each other.<br />

C<br />

So, ▲ABC ~ ▲ACD ~ ▲CBD<br />

A<br />

D<br />

B<br />

The Pythagorean Theorem<br />

In any right triangle, the square of the length of the hypotenuse is equal to<br />

the sum of the squares of the lengths of the legs.<br />

c 2 = a 2 + b 2<br />

Example 1<br />

In ΔABC, BD is an altitude to hypotenuse AC. Identify the similar triangles.<br />

Solution 1<br />

ΔACB ~ ΔABD ~ΔBCD<br />

8-7 <strong>Similarity</strong> <strong>in</strong> <strong>Right</strong> <strong>Triangles</strong>


Mrs. Aitken’s Integrated 2<br />

Unit 8 Similar and Congruent <strong>Triangles</strong><br />

Example 2<br />

F<strong>in</strong>d the measure of each unknown side.<br />

a. b.<br />

Solution 2<br />

Use the Pythagorean Theorem because these are right triangles!<br />

a. a 2 + b 2 = c 2 b. a 2 + b 2 = c 2<br />

5 2 +5 2 = c 2 x 2 +x 2 = 4 2<br />

25 + 25 = c 2 2x 2 = 16<br />

50 = c 2 x 2 =8<br />

c = 7.1 x = 2.8<br />

Example 3<br />

In right ΔABC, CD is the altitude to the hypotenuse AB. The measure of


Mrs. Aitken’s Integrated 2<br />

Unit 8 Similar and Congruent <strong>Triangles</strong><br />

Example 4<br />

Write a two-column proof of the Pythagorean theorem<br />

Given: ΔABC with right angle C,<br />

Prove: c 2 = a 2 + b 2<br />

Solution 4<br />

Plan ahead<br />

Draw the altitude of ΔABC from vertex C and label the po<strong>in</strong>t of <strong>in</strong>tersection on AB as<br />

po<strong>in</strong>t D. Use the similar right triangle theorem to identify similar triangles. Then use<br />

the def<strong>in</strong>ition of similar triangles to write proportions <strong>in</strong>volv<strong>in</strong>g the variables a, b, and<br />

c. Use algebra to obta<strong>in</strong> c 2 = a 2 + b 2 .<br />

As an aid, show the correspond<strong>in</strong>g sides of the three similar right triangles.<br />

Statement<br />

1. ΔABC with right angle C 1. Given<br />

2. Draw altitude from C to po<strong>in</strong>t<br />

D on AB<br />

ΔABC ~ ΔACD<br />

ΔABC ~ ΔCBD<br />

Justification<br />

2. If the altitude is drawn to the hypotenuse<br />

of a right triangle, then the two<br />

triangles formed are similar to the<br />

orig<strong>in</strong>al triangle and to each other.<br />

c b c a<br />

3. Def<strong>in</strong>ition of similar triangles.<br />

3. = ; =<br />

b f a e<br />

Correspond<strong>in</strong>g sides are <strong>in</strong> proportion.<br />

4. ce = a 2 ; cf = b 2 4. Multiplication property of equality<br />

5. cf + ce = a 2 + b 2 5. Addition property of equality<br />

6. c(f + e) = a 2 + b 2 6. Distributive property of equality<br />

7. e + f = c 7. For any segment, the measure of the<br />

whole is equal to the sum of the measures<br />

of its non-overlapp<strong>in</strong>g parts<br />

8. c(c) = a 2 + b 2 or c 2 = a 2 + b 2 8. Substitution property (Steps 6 & 7)<br />

8-7 <strong>Similarity</strong> <strong>in</strong> <strong>Right</strong> <strong>Triangles</strong>


Mrs. Aitken’s Integrated 2<br />

Unit 8 Similar and Congruent <strong>Triangles</strong><br />

Geometric Mean<br />

The Geometric mean of two numbers, a and b, is the positive square root of<br />

their product, √ab.<br />

The geometric mean can be expressed as a proportion. The value of x<br />

(geometric mean) <strong>in</strong> the proportion<br />

a x<br />

= , where a, b, and x are positive numbers. x is the geometric mean between<br />

x b<br />

a and b<br />

4 6<br />

Example: 6 is the geometric mean between 4 and 9, s<strong>in</strong>ce =<br />

6 9 .<br />

The Arithmetic mean of two numbers, a and b, is the number half-way between the<br />

two numbers, (a + b)/2.<br />

The geometric mean is always positive.<br />

Example 1<br />

F<strong>in</strong>d the geometric mean between 2 and 72.<br />

Solution 1<br />

a x<br />

Use =<br />

x b .<br />

2 x<br />

So, = , solve by cross multiply<strong>in</strong>g<br />

x 72<br />

2• 72 = x • x<br />

2<br />

144 = x<br />

144 =<br />

x = 12<br />

2<br />

x<br />

The geometric mean is 12.<br />

Example 2<br />

10 is the geometric mean between 25 and what other number?<br />

Solution 2<br />

a x<br />

Use =<br />

x b .<br />

8-7 <strong>Similarity</strong> <strong>in</strong> <strong>Right</strong> <strong>Triangles</strong>


Mrs. Aitken’s Integrated 2<br />

Unit 8 Similar and Congruent <strong>Triangles</strong><br />

25 10<br />

So, = , solve by cross multiply<strong>in</strong>g<br />

10 b<br />

25 10<br />

=<br />

10 b<br />

25b<br />

= 100<br />

b = 4<br />

So, 10 is the geometric mean between 4 and 25.<br />

Geometric Mean Theorem<br />

If the altitude is drawn to the hypotenuse of a right triangle, then the<br />

measure of the altitude is the geometric mean between the measures of the<br />

parts of the hypotenuse.<br />

C<br />

AD<br />

CD<br />

CD<br />

=<br />

BD<br />

A<br />

D<br />

B<br />

Example 3<br />

F<strong>in</strong>d the lengths x, y, and z.<br />

Solution 3<br />

First f<strong>in</strong>d x. Use the geometric mean theorem to write a<br />

proportion <strong>in</strong>volv<strong>in</strong>g x because x is the altitude of ΔABC.<br />

6.5 x<br />

=<br />

x 26<br />

2<br />

x = 169<br />

x = 13<br />

Use the value of x and the Pythagorean theorem to f<strong>in</strong>d y.<br />

2 2 2<br />

y = x + 26<br />

2 2 2<br />

y = 13 + 26<br />

2<br />

y = 845<br />

y ≈ 29.1<br />

Use the value of x and the Pythagorean theorem to f<strong>in</strong>d z.<br />

8-7 <strong>Similarity</strong> <strong>in</strong> <strong>Right</strong> <strong>Triangles</strong>


Mrs. Aitken’s Integrated 2<br />

Unit 8 Similar and Congruent <strong>Triangles</strong><br />

z = x + 6.5<br />

2 2 2<br />

z = 13 + 6.5<br />

2 2 2<br />

2<br />

z = 211.25<br />

z = 14.5<br />

The lengths of x, y, and z are 13, about 29.1, and about 14.5.<br />

Example 4<br />

F<strong>in</strong>d the lengths of m, n, and p.<br />

Solution 4<br />

a x<br />

=<br />

x b<br />

First f<strong>in</strong>d m.<br />

12 m<br />

=<br />

m 3<br />

2<br />

m = 36<br />

2<br />

m =<br />

m = 6<br />

36<br />

Use the Pythagorean theorem to f<strong>in</strong>d n and p.<br />

2 2<br />

12 + 6<br />

2<br />

= p<br />

2 2<br />

6 + 3<br />

2<br />

= n<br />

2<br />

144+ 36 = p<br />

2<br />

180 = p<br />

2<br />

36 + 9 = n<br />

2<br />

45 = n<br />

180 =<br />

2<br />

p<br />

p = 6 5 = 13.4<br />

2<br />

45 = n<br />

n = 3 5 = 6.7<br />

8-7 <strong>Similarity</strong> <strong>in</strong> <strong>Right</strong> <strong>Triangles</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!