30.11.2014 Views

3D-Micromac AG - TRUMPF Laser

3D-Micromac AG - TRUMPF Laser

3D-Micromac AG - TRUMPF Laser

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Laser</strong>bearbeitung von dünnen Schichten auf<br />

Rolle-zu-Rolle-Anlagen<br />

Dr. Frank Allenstein<br />

<strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong><br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


<strong>3D</strong>-<strong>Micromac</strong> – At a Glance<br />

141 employees in R&D, manufacturing and service<br />

Worldwide more than 300 industrial installations<br />

Since 1994 experience in laser technology<br />

Numerous worldwide patents<br />

Sales partner for <strong>Micromac</strong>hining products<br />

Japan<br />

China<br />

Hikali KK<br />

Süss Microtech (Shanghai) Ltd.<br />

Micro Power Semiconductor Ltd.<br />

Sanwa Technologies Ltd.<br />

Korea Raytec Korea Ltd<br />

Taiwan Ascent Technologies Ltd.<br />

Superbin Ltd.<br />

USA<br />

<strong>3D</strong>-<strong>Micromac</strong> America Corp.<br />

Sales partner ophthalmic, worldwide <strong>Laser</strong> 2000 GmbH<br />

Sales partner microSINTERING technology EOS GmbH<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


<strong>3D</strong>-<strong>Micromac</strong> – microFLEX Center<br />

Move in: May 2012<br />

Construction time:<br />

7 months<br />

Office and production area: 2000 m 2<br />

Total invested amount: 3.0 million €<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


microFLEX – Evolution<br />

2003: start of<br />

R2R process<br />

development<br />

and web<br />

handling<br />

2006: first<br />

machine<br />

prototype<br />

2010: microFLEX<br />

V1.0 with basic<br />

modularity<br />

2011: microFLEX Rollto-Roll<br />

system for the<br />

industrial production<br />

of RFID antennas<br />

2012: microFLEX<br />

V2.0 with a<br />

complex modular<br />

setup<br />

2012: microFLEX<br />

R&D line at <strong>3D</strong>MM<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


microFLEX at <strong>3D</strong>MM<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


<strong>Laser</strong> Processing – Fixed Optics<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


<strong>Laser</strong> Processing – Scanner<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Applications<br />

<strong>Laser</strong> Thin-Film Ablation – Organic Photovoltaics<br />

<strong>Laser</strong> Thin-Film Ablation – OLEDs<br />

Summary<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


<strong>Laser</strong> Thin-Film Ablation – Organic Photovoltaics<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Organic Photovoltaics<br />

Ag<br />

P3HT : PCBM<br />

PEDOT : PSS<br />

ITO<br />

Substrate<br />

light<br />

Organic Solar Cell<br />

conventional stack layout<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Experimental Setup<br />

laser source<br />

beam path<br />

2D<br />

scanner<br />

f-theta lens<br />

2D-scanner performance parameters<br />

Repeatability < 22µrad<br />

Tracking error: 0.18 ms<br />

Long term drift < 0.6 mrad<br />

vacuum exhaust<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Experimental Setup – <strong>Laser</strong> Sources<br />

<strong>Laser</strong><br />

Wavelength<br />

in nm<br />

Pulse duration<br />

Repetition<br />

rate in kHz<br />

Average power<br />

in W<br />

Machining speed<br />

in mm/s<br />

ns – laser 1064 ~ 30 ns 500 100 1000<br />

ps – laser 1064/532/355 < 12 ps 500 50 1000<br />

fs - laser 1024/512 < 500 fs 200 10 400<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ITO on Glass<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ns – <strong>Laser</strong> | Wavelength λ = 1064 nm<br />

ITO layer on glass substrate:<br />

Cracks in substrate<br />

ITO layer melted<br />

ITO layer on PET foil substrate:<br />

PET foil massively damaged<br />

Huge ITO bulges at the cutting edges<br />

microscope image<br />

microscope image<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ps – <strong>Laser</strong> | Wavelength λ = 1064 nm<br />

Glass substrate<br />

DEKTAK image<br />

ITO<br />

substrate<br />

ITO<br />

bulge within range of RA<br />

ITO<br />

nm<br />

60<br />

0<br />

-60<br />

No heat affected zone<br />

No melting of ITO<br />

No cracks in substrate<br />

Good edge quality<br />

Large process window<br />

microscope image<br />

-120<br />

substrate<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ps – <strong>Laser</strong> | Wavelength λ = 532 nm<br />

Glass substrate<br />

DEKTAK image<br />

ITO<br />

substrate<br />

ITO<br />

bulge within range of RA<br />

ITO<br />

nm<br />

0<br />

-60<br />

Almost no heat affected zone<br />

No melting of ITO<br />

No cracks in substrate<br />

Good edge quality, comparable<br />

to 1064 nm<br />

microscope image<br />

-120<br />

substrate<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ps – <strong>Laser</strong> | Wavelength λ = 355 nm<br />

Glass substrate<br />

DEKTAK image<br />

ITO<br />

substrate<br />

ITO<br />

microscope image<br />

bulge between 10…30 nm<br />

ITO<br />

nm<br />

0<br />

-60<br />

Small heat affected zone<br />

No melting of ITO<br />

No cracks in substrate<br />

Good edge quality<br />

-120<br />

substrate<br />

microscope image<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


fs – <strong>Laser</strong> | Wavelength λ = 1024 nm<br />

Glass substrate<br />

No bulge<br />

Result comparable to ps<br />

microscope image<br />

SEM microscope<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ITO on PET Film<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ps – <strong>Laser</strong> | Wavelength λ = 1064 nm<br />

PET film substrate (thickness ~50 µm)<br />

DEKTAK image<br />

microscope image<br />

nm<br />

No heat affected zone<br />

ITO<br />

bulge less than 20 nm!<br />

40<br />

Good edge quality<br />

substrate<br />

ITO<br />

ITO<br />

0<br />

Small debris in proximity to the<br />

scribed area<br />

-40<br />

Large process window<br />

microscope image<br />

Slight delamination of ITO at the<br />

substrate<br />

-80<br />

REM microscope<br />

cutting edge<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ps – <strong>Laser</strong> | Wavelength λ = 532 nm<br />

PET film substrate (thickness ~50 µm)<br />

DEKTAK image<br />

ITO<br />

bulge 50…60 nm<br />

nm<br />

40<br />

Small heat affected zone<br />

Average edge quality<br />

heat affected zone<br />

substrate<br />

ITO<br />

ITO<br />

0<br />

-40<br />

Some debris in and around<br />

machining area<br />

microscope microscope image image<br />

-80<br />

substrate<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


ps – <strong>Laser</strong> | Wavelength λ = 355 nm<br />

PET film substrate (thickness ~50 µm)<br />

Heat affected zone<br />

ITO<br />

substrate<br />

Damaged substrate due to high<br />

absorption<br />

Low edge quality due to chipping of<br />

ITO<br />

microscope image<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


fs – <strong>Laser</strong> | Wavelength λ = 1024 nm<br />

PET-foil substrate (thickness ~50 µm)<br />

Minimal damage to PET film<br />

Smooth cutting edge<br />

No delamination of ITO layer<br />

microscope image<br />

SEM microscope<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Conclusions to Scribing of ITO<br />

Indium tin oxide<br />

λ = 1064 nm excellent scribing quality on both glass and film<br />

λ = 532 nm<br />

λ = 355 nm<br />

good scribes on glass but shows higher bulging on film<br />

good scribes on glass but damages foil due to high absorption<br />

λ = 1064 nm is to be preferred<br />

Best scribing quality on both glass and film<br />

High output powers available<br />

Relatively inexpensive laser source available<br />

ps laser for scribing on glass substrates<br />

fs laser for scribing on polymer substrates<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Applications<br />

<strong>Laser</strong> Thin-Film Ablation – Organic Photovoltaics<br />

<strong>Laser</strong> Thin-Film Ablation – OLEDs<br />

Summary<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


<strong>Laser</strong> Thin-Film Ablation – OLEDs<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


OLED Layout and Scribing<br />

P1 Scribe:<br />

Isolation cut in back electrode<br />

P2 Scribe:<br />

Selective ablation of organic stack<br />

P3 Scribe:<br />

Isolation cut in front contact<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Experimental Setup<br />

laser source<br />

beam path<br />

2D<br />

scanner<br />

f-theta lens<br />

2D-scanner performance parameters<br />

Repeatability < 22µrad<br />

Tracking error: 0.18 ms<br />

Long term drift < 0.6 mrad<br />

vacuum exhaust<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Experimental Setup – <strong>Laser</strong> Source<br />

Ultra-short pulse picosecond laser<br />

Pulse repetition rate up to 1 MHz<br />

Pulse duration < 12 ps<br />

Average power up to 50 W (@1064 nm)<br />

Wavelengths 1064/532/355 nm<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P1 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 1064 nm<br />

Ablation of back contact metal layer<br />

not possible without ablation of<br />

passivation layer<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P1 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 532 nm<br />

surface profile<br />

Markspeed 4.000 mm/s<br />

Bulge < 20 nm<br />

Selective ablation of metal back<br />

contact<br />

Almost no debris generated<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P1 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 355 nm<br />

Markspeed 4.000 mm/s<br />

ITO<br />

Bulge < 50 nm<br />

Selective ablation of metal back<br />

substrate<br />

electrode<br />

Smooth cutting edge<br />

surface profile<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P2 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 1064 nm<br />

Markspeed 2.500 mm/s<br />

No bulge observed<br />

Good edge quality<br />

Back electrode not fully uncovered<br />

surface profile<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P2 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 532 nm<br />

Markspeed 7.000 mm/s<br />

Bulge < 10 nm<br />

Good edge quality<br />

Back electrode fully uncovered<br />

surface profile<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P2 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 355 nm<br />

Markspeed 5.000 mm/s<br />

Bulge < 10 nm<br />

Back electrode fully uncovered<br />

Organic stack step wise ablated at<br />

surface profile<br />

cutting edge<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P3 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 1064 nm<br />

Markspeed 1.500 mm/s<br />

Bulge < 20 nm<br />

Good edge quality<br />

Stepwise ablation of multiple layers<br />

surface profile<br />

OLED stack not fully ablated<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P3 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 532 nm<br />

Markspeed 2.000 mm/s<br />

Bulge < 30 nm<br />

Good edge quality<br />

OLED stack fully ablated<br />

surface profile<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


P3 Scribe: ps – <strong>Laser</strong> | Wavelength λ = 355 nm<br />

Markspeed 5.000 mm/s<br />

Delamination of brittle metal layer<br />

Markspeed 1.500 mm/s<br />

Generation of large bulge (~100 nm)<br />

surface profile<br />

optical microscopy<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Conclusions to <strong>Laser</strong> Scribing of OLEDs with ps-<strong>Laser</strong><br />

P1 Scribe:<br />

ps-<strong>Laser</strong> with green wavelength is recommended<br />

Maximum achievable machining speed approximately 8.000 mm/s.<br />

P2 Scribe:<br />

ps-<strong>Laser</strong> with green wavelength is recommended<br />

Maximum achievable machining speed approximately 14.000 mm/s.<br />

P3 Scribe:<br />

ps-<strong>Laser</strong> with IR or green wavelength is recommended<br />

Maximum achievable machining speed approximately 4.000 mm/s.<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Applications<br />

<strong>Laser</strong> Thin-Film Ablation – Organic Photovoltaics<br />

<strong>Laser</strong> Thin-Film Ablation – OLEDs<br />

Summary<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Summary<br />

This looks quite simple, doesn‘t it?<br />

Several things can be learned:<br />

1. There is a difference between the ablation from foil and glass<br />

2. The necessary power (fluence) is usually smaller on foil than on glass<br />

And it is getting even more complicated<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Experiment 1<br />

Three different stacks with identical top layer<br />

Experiment with single pulses with a 1064<br />

nm ps-laser<br />

Layer to be ablated: always 120 nm thick<br />

Fluence<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Experiment 2<br />

Equal stack with different top layer thicknesses<br />

In comparison the layer thickness has only few impact on the other side<br />

120nm<br />

240nm<br />

Fluence<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012


Vielen Dank für Ihre<br />

Aufmerksamkeit!<br />

<strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong><br />

Technologie-Campus 8<br />

09126 Chemnitz<br />

Telefon: +49 371 / 400 43 - 0<br />

Fax: +49 371 / 400 43 - 40<br />

Email: info@3d-micromac.com<br />

Internet: http://www.3d-micromac.com<br />

© <strong>3D</strong>-<strong>Micromac</strong> <strong>AG</strong> 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!